

Introduction to ANSYS CFX

Realize Your Product Promise®

Lecture Theme:

• All CFD simulations follow the same key stages. This lecture explains how to go from the original planning stage through to analysing the end results. After this CFX will be introduced

Learning Aims – you will learn:

- The basics of what CFD is and how it works
- The different steps involved in a successful CFD Project
- How to work with CFX

Σ	Introduction	CFD Approach	Pre-Processing	Solution	Summary	>
2	© 2015 ANSYS, Inc.	March 13, 2015	ANSYS Confidential			

Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena

The equations for the conservation of mass, momentum, energy, etc.

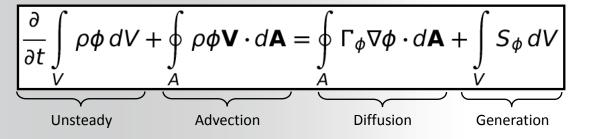
CFD is used in all stages of the design process:

- Conceptual studies of new designs
- Detailed product development
- Troubleshooting
- Redesign

CFD analysis complements testing and experimentation by reducing total effort and cost required for experimentation and data acquisition

 Introduction
 CFD Approach
 Pre-Processing
 Solution
 Summary

 3
 © 2015 ANSYS, Inc.
 March 13, 2015
 ANSYS Confidential
 Solution
 Summary

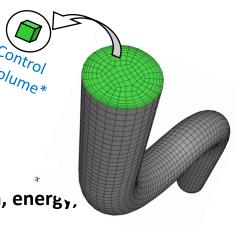


Δ

How Does CFD Work?

ANSYS CFD solvers are based on the finite volume method

- Domain is discretized into a set of control volumes
- General conservation (transport) equations for mass, momentum, energy, species, etc. are solved on this set of control volumes



Equation	<u> </u>
Continuity	1
X momentum	и
Y momentum	V
Z momentum	W
Energy	h

- Partial differential equations are discretized into a system of algebraic equations
- All algebraic equations are then solved numerically to render the solution

 Introduction
 CFD Approach
 Pre-Processing
 Solution
 Summary

 © 2015 ANSYS, Inc.
 March 13, 2015
 ANSYS Confidential
 Summary

Step 1 – Define Your Modeling Goals

What results are you looking for (i.e. pressure drop, mass flow rate) and how will they be used?

What are your modeling options?

- What physical models will need to be included in your analysis?
- What simplifying assumptions do you have to make?
- What simplifying assumptions can you make (i.e. symmetry, periodicity)?

What degree of accuracy is required?

How quickly do you need the results?

Is CFD an appropriate tool?

Step 2 – Identify the Domain to Model

How will you isolate a piece of the complete physical system?

Where will the computational domain begin and end?

- Do you have boundary condition information at these locations?
- Can the boundary condition types accommodate that information?
- Can you extend the domain to a point where reasonable data exists?

Domain of interest isolated and meshed for CFD simulation.

Domain of Interest

as Part of a Larger

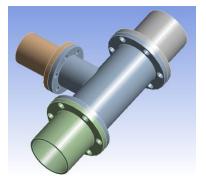
Summary

System

Can the problem be simplified or approximated as a 2D or axisymmetric problem?

 Introduction
 CFD Approach
 Pre-Processing
 Solution

 6
 © 2015 ANSYS, Inc.
 March 13, 2015
 ANSYS Confidential


Step 3 – Create a Solid Model

How will you obtain a model of the *fluid* region?

- Make use of existing CAD models?
- Extract the fluid region from a solid part?
- Create from scratch?

Can you simplify the geometry?

- Remove unnecessary features that would complicate meshing (fillets, bolts...)?
- Make use of symmetry or periodicity if both the solution and boundary conditions are symmetric / periodic?

2	Introduction	CFD Approach
7	© 2015 ANSYS, Inc.	March 13, 2015

Pre-Processing

ANSYS Confidential

Solution

Summary

Step 4 – Design and Create the Mesh

What is the required mesh resolution?

• Resolves geometric features of interest and capture gradients of concern, e.g. velocity, pressure, temperature gradients

What type of mesh is most appropriate?

- Can you use a hexahedral mesh?
- Are non-conformal interfaces needed?

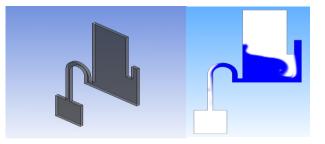
Do you have sufficient CPU resources?

- How many cells/nodes are required?
- How many physical models will be used?

	Introduction	CFD Approach
8	© 2015 ANSYS, Inc.	March 13, 2015

Pre-Processing

Solution


Step 5 – Set up the Solver

For a given problem you will need to:

- **Define material properties**
 - Fluid, Solid, or Mixture
- Select appropriate physical models
 - Turbulence, combustion, multiphase, etc.
- Prescribe boundary conditions
- **Provide initial values of a previous solution**
- Set up solver controls

CFD Approach

For complex problems solving a simplified or 2D problem will provide valuable experience with the models and solver settings for your problem in a short amount of time

Solution

Summary

Introduction © 2015 ANSYS, Inc. 9

March 13, 2015

Pre-Processing ANSYS Confidential

Step 6 – Compute the Solution

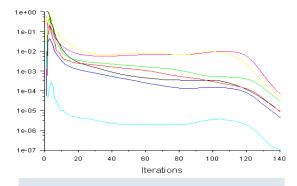
Convergence is reached when:

- Changes from one iteration to the next are negligible
 - Residuals monitor this trend
- Overall property conservation is achieved
 - Imbalances measure global conservation
- Quantities of interest have reached steady values
 - Monitor points track quantities of interest

The accuracy of a *converged* solution depends on

CFD Approach

- Appropriateness and accuracy of physical models
- Mesh resolution and independence


March 13, 2015

• Numerical errors

Introduction

© 2015 ANSYS, Inc.

10

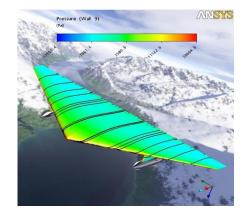
A converged and meshindependent solution on a well-posed problem will provide useful engineering results!

Pre-Processing

Solution

Summary

Step 7 – Examine the Results


Examine the results to review solution and extract useful data

Use Visualization tools to answer:

- What is the overall flow pattern?
- Is there separation?
- Where do shocks, shear layers, etc. form?
- Are key flow features being resolved?

Calculate quantitative results:

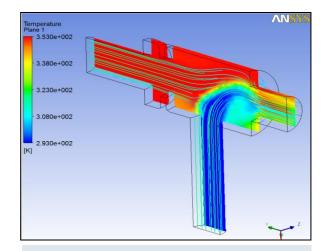
- Forces and moments
- Average heat transfer coefficients
- Surface and volume integrated quantities

Examine results to ensure property conservation and correct physical behavior. High residuals may be caused by just a few poor quality cells.

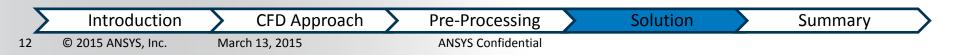
IntroductionCFD ApproachPre-ProcessingSolutionSummary11© 2015 ANSYS, Inc.March 13, 2015ANSYS Confidential

Step 8 – Consider Model Revisions

Are the physical models appropriate?


- Is the flow turbulent or unsteady?
- Any compressibility effects or 3D effects?

Are the boundary conditions correct?


- Computational domain large enough?
- Boundary values reasonable?

Is the mesh adequate?

• Does the solution change with a refined mesh, or is the solution mesh independent?

High residuals may be caused by just a few poor quality cells

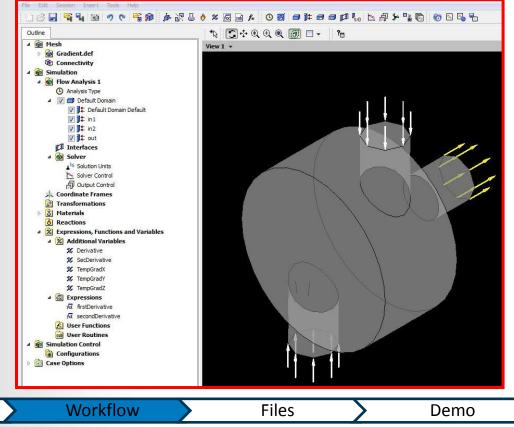
ANSYS Summary and Conclusions

- All CFD simulations are approached using the steps just described
- Remember to think first about what the aims of the simulation are prior to creating the geometry and mesh
- Make sure the solver is applying the appropriate physical models and that the simulation is fully converged
- Examine the results carefully
 - You may need to rework some of the earlier steps in light of the flow field predicted by CFD
- Next step: We'll look at an overview of the workflow in CFX and follow that with a demonstration of CFX in action

	Introduction	CFD Approach	$\boldsymbol{\succ}$	Pre-Processing	Σ	Solution	$\boldsymbol{\succ}$	Summary	
13	© 2015 ANSYS, Inc.	March 13, 2015		ANSYS Confidential					

Introduction to ANSYS CFX

Realize Your Product Promise®



CFX Pre – Workflow

Launching CFX

- Follow the Outline tree from top to bottom
- Double-click entries in the tree to edit
- Right-click on entries in the tree to insert new items or perform operations

15 © 2015 ANSYS, Inc. March 13, 2015

Introduction

ANSYS Confidential

CFX Pre – Workflow

- Load Mesh
- Define Domain Properties
 - Right-click on 'Flow Analysis 1' to insert a new domain
- Create Boundary Conditions
 - Right-click on the domain to insert BCs
- Define Solver Settings
 - Right-click on Solver Control and pick Edit

Inserting an item opens a new tab panel with properties. TIP: Work through all tabs from left to right

Ē	Outline 🕨 Domain: Defa	ault Domain	×				
De	etails of Default Domai	n in Flow Analysis 1					
	Basic Settings Fluid	Models Initialisation Solver Control	_				
	Location and Type		h				
	Location	B1.P3 💌]				
	Domain Type	Fluid Domain					
	Coordinate Frame	Coord 0					
	-Fluid and Particle Defin	itions	5I				
	Fluid 1						
Co	<mark>m</mark> plete the r	equired fields on 🛛 🛛 🙀					
ea	ch sub-tab t	o define the domain					
	Fluid 1						
	Option	Material Library 👻					
	Material	Air at 25 C 🛛 🖌 📈					
	- Morphology						
	Option	Continuous Fluid					
	🖉 🔄 Minimum Volum	e Fraction 🛛 🛨					

CFX-Pre – Workflow Example

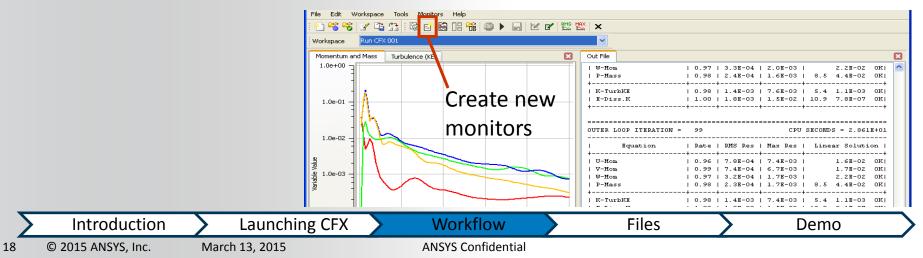
Start Solver

Introduction

© 2015 ANSYS, Inc.

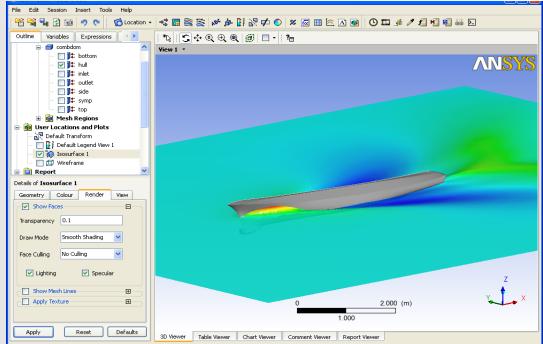
- Close CFX-Pre
- Right-click on Solution and select Edit to open Solver Manager

Run Definition Type of Run Double Preci Parallel Environ Run Mode	Serial	Partitioner	Solver	Interpolato		Solver Manager
Double Preci Parallel Enviror Run Mode	sion nment Serial	łost Name		-		anage
		lost Name		•		
miljepearson2	H	lost Name				2
						Σ
Show Advan	ced Controls					Vor
Start Run Sav	Settings				Cancel	


Launching CFX

March 13, 2015

Workflow ANSYS Confidential


ANSYS CFX Solver Manager

- Solution Monitors monitor the convergence of the solver
 - Plot residuals, imbalances, monitor points, forces, fluxes...
- Text output from the Solver shows lots of info in here
 - Can also view the .out file in a text editor

Outline tree displays all postprocessing objects. Double-click to edit in the Details Pane

🙀 Fresh Liq

Introduction

© 2015 ANSYS, Inc.

Mix Effectiveness

Reference Pressure

α

να

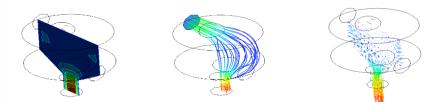
<u>σ</u>

General Workflow

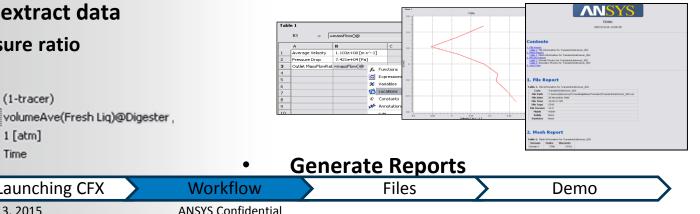
- **Prepare locations for data** extraction or plot generation
 - e.g. Planes, Isosurface
- Create variables, expressions which will be used to extract data

(1-tracer)

1 [atm]


Launching CFX

Time


March 13, 2015

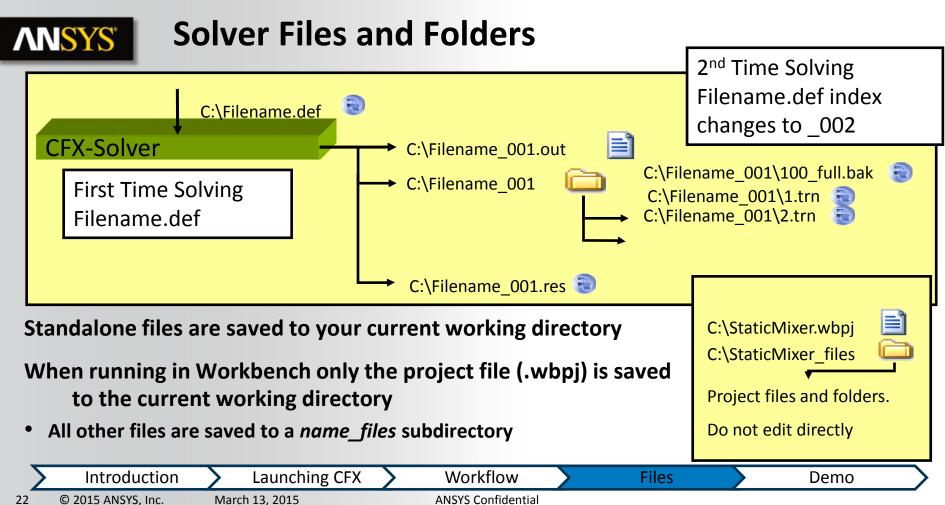
e.g. Drag, pressure ratio

Generate qualitative data at locations

Generate quantitative data at locations



20

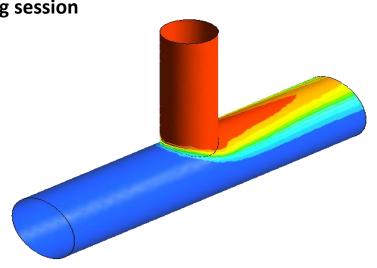

Common File Types

- .cfx files contain mesh and physics data and can be opened by CFX-Pre
- .def files contain mesh and physics data and can be run in the Solver
- .res files contain mesh, physics and results data and can be opened in CFD-Post

- CFX-Pre can open .def and .res files to recover mesh and physics.
- The CFX-Solver can use .res files to continue a run or as an initial guess
- CFD-Post can also open .def and .cmdb files to view the mesh

	Introduction	Launching CFX	Workflow	Files	Demo	>
21	© 2015 ANSYS, Inc.	March 13, 2015	ANSYS Confidential			

22



DEMO & Workshop 01 – Mixing Tee

Demonstration of Static Mixer

Introductory tutorial for CFX

- Starting from existing mesh
 - generated in earlier tutorial during the DM / Meshing session
- Model set-up, solution and post-processing
- Mixing of cold and hot water in a T-piece
- How well do the fluids mix?
- What are the pressure drops?

