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16.0 Release 

Lecture 9: 

Heat Transfer 

Introduction to ANSYS CFX 
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Introduction 

• Lecture Theme: 

– Heat transfer has broad applications across all industries.  All modes of 
heat transfer (conduction, convection – forced and natural, radiation, 
phase change) can be modeled. 

• Learning Aims: 

– You will be familiar with CFX’s heat transfer modeling capabilities and be 
able to set up and solve problems involving all modes of heat transfer 
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• Convection 

– Heat transfer  due to the bulk 
movement of a fluid 

– Forced: flow is induced by some 
external means 

– Natural or Free: fluid moves due to 
buoyancy effects  

– Boiling: phase change (not covered in 
this course) 

 

 

• Conduction 

– Heat transfer in a fluid or solid due to 
differences in temperature 

– Conduction is described by Fourier’s 
law: 

• heat flux is directly proportional to 
the negative temperature gradient  

 

 

 

Mechanisms 

Thermal  
conductivity 
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• Radiation 

– Transfer of thermal energy by 
electromagnetic waves  from 0.1 µm 
(ultraviolet) to 100 µm (mid-infrared) 

– Radiation intensity is directionally and 
spatially dependent 

• Viscous Dissipation 

– Energy source due to viscous heating 

– Important when viscous shear in fluid 
is large (e.g., lubrication) and/or in 
high-velocity, compressible flows 

 

Mechanisms 
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Governing Equation : Fluid domain 
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• Heat Transfer option  

– None:  

• Energy Transport not solved 

– Isothermal:  

• Energy Transport not solved, temperature is set for the  evaluation of fluid properties 

– Thermal Energy:  

• Energy Transport is solved; kinetic energy effects  neglected   

• For low speed flow 

– Total Energy:  

• Transport of enthalpy and kinetic energy effects 

• For Mach number > 0.3 or compressibility effects,  

• For low speed liquid flow when the specific heat is not constant 

Heat Transfer Models: Fluid Domains 

Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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• If natural convection is important, then 
switch on the Buoyancy Model  

– For varying density full buoyancy model used  

– For constant density Boussinesq model used 

• Thermal Radiation model  

– Should be accounted for when 

 

• Several radiation models are available 
which provide approximate solutions to 
the RTE (more information in appendix) 

 

 

 

 

Heat Transfer Models: Fluid Domains 

Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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Governing Equation : Solid domains 

• Heat transfer in a solid domain is modeled using the following 
conduction equation: 

 

 

 

• h is the sensible enthalpy : 
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Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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• For conduction set Heat Transfer option to 
Thermal Energy 

• Thermal radiation in solids 

– Required only for transparent or semi-transparent 
materials, e.g. glass; no radiation in opaque solids  

–  Monte Carlo model only 

 

 

Heat Transfer Models: Solid Domains 

Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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Thermal Wall Boundary Condition 

• Thermal boundary conditions come in three types, all available in ANSYS CFX: 

– Neumann 

– Robin/Fourier 

– Dirichlet 

• They represent heat transfer phenomena outside the domain 

 Neumann Condition 
(Specified Flux) 

q (W.m-2) 

Robin/Fourier Condition 
(Specified HTC) 

hconv (W.m-2.K-1); q = hconv.(Tamb-Tbody) 

Dirichlet Condition 
(Specified Temperature) 

T (K) 

Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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Conjugate Heat Transfer (CHT) - Domain 
Interfaces 

• GGI connection is only option for Fluid-Solid and Solid-Solid 
interfaces because… 

– GGI interface 

• No discontinuity in values of temperature across  the interface 

• CFX Solver calculates a "surface temperature" based on a flux-
conservation equation  

– 1:1 interface  

• May result in temperature discontinuity at the interface 

• Radiation conditions are set on the side in which radiation is 
modelled, e.g. the fluid side of a fluid/solid interface 

Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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Wall thickness meshed: 

• Fourier’s Law Solved in 3D 

 

 

 

 

• Energy equation solved in solid 

• Accurate approach  requires more 
meshing & computational effort 

 

 

Wall thickness NOT meshed (thin wall): 

• 1-D Fourier’s Law through Wall 

    Thermal Resistance 

 

 

 

• Artificially models conduction across wall 
thickness  

• Limitation: conduction is assumed to be 
normal to the wall 
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• Set-up 

– Create a Fluid-Fluid Domain Interface 

– On Additional Interface Models tab set Mass and 
Momentum = No Slip Wall  

– Enable Heat Transfer toggle and pick: 

• Thin Material and specify a Material & Thickness or 
Thermal Contact Resistance 

• Note : Other domain interface types (Fluid-Solid etc.) 
can use these options to represent coatings etc. 

 

Conjugate Heat Transfer – Thin walls 

Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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• Temperature:  
– Local fluid temperature, plotted on a wall it is the temperature 

at the wall, Twall 

• Wall Adjacent Temperature: 
– Average temperature in control volume next to wall 

• Wall Heat Transfer Coefficient, hc:  
– Based on Twall and the Wall Adjacent Temperature by default 

– To base it on some far-field value instead of the Wall Adjacent 
Temperature, use the Expert Parameter “tbulk for htc” 

• Wall Heat Flux, qw: 
– Total heat flux into the domain by all modes 

– Available on all boundaries 

 

 

Post-Processing Heat Transfer 

Where Tref is the Wall Adjacent 
Temperature or the tbulk for htc 
temperature if specified 
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qw 
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Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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Post-Processing Heat Transfer  

• Heat Flux: 

– Total convective and radiative heat flux into the domain 

– Available on all boundaries 

– On flow boundaries, it represents the energy carried with the fluid relative to its 
Reference Temperature  

• Wall Radiative Heat Flux: 

– Net radiative energy leaving the boundary  

– Wall Convective Heat Flux + Wall Radiative Heat Flux = Wall Heat Flux 

– Only applicable when radiation is modeled 

• Wall Irradiation Flux: 

– Incoming radiative flux 

– Only applicable when radiation is modeled 
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• Allow sufficient solution time  

– Heat imbalances in all domains have to 
approach zero 

• Monitor 

– Create Solver Monitors showing 
IMBALANCE levels for fluid and solid 
domains 

– View the imbalance information printed at 
the end of the solver output file 

– Use a Conservation Target when defining 
Solver Control in CFX-Pre 

Solution Convergence 

1e-04 

Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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Summary 

• When modelling heat transfer, you must provide : 

– Thermal conditions at walls and flow boundaries 

– Thermal properties for materials 

• Available heat transfer modeling options include : 

– Species diffusion heat source 

– Combustion heat source 

– Conjugate heat transfer 

– Natural convection 

– Radiation 

– Periodic heat transfer 

 Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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Dissipation of heat from a hot 
electronics component 

• Conjugate Heat Transfer (CHT) 

• Two runs 

– First run includes convection and 
conduction 

– Second run adds thermal radiation 

The entire calculation takes a long time 
to run.  So results are provided for post-
processing. 

 

Workshop 05  Electronics Cooling 

Mechanisms Energy Equation Models Wall BCs CHT Post Tips/Summary 
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16.0 Release 

Appendix 

Introduction to ANSYS CFX 
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Natural Convection 
 

• The significance of natural convection can be assessed through the Richardson number , 
Ri: 

 

 

 

 

• In buoyancy-driven flows, the Rayleigh number, Ra, indicates the relative importance of 
convection and conduction: 

 

– The size of Ra is a measure of whether a natural convection boundary layer is laminar or 
turbulent.  For a vertical surface the critical value is around 109 but the transition zone ranges 
from 106 to 109. 

 

Ri  = 1      Free and Forced convection effects must be considered 

Ri  1       Free convection effects may be neglected 

Ri >> 1       Forced convection effects may be neglected 
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Radiation: Mechanism 

 

 

 

• Radiation intensity is directionally and spatially dependent 

• Transport mechanisms for radiation intensity along one given direction: 
 

 

 

 

 

 

– Scattering occurs when particles are present in the fluid - often neglected. 
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• Transfer of thermal energy by 
electromagnetic waves  from 0.1 µm 
(ultraviolet) to 100 µm (mid-infrared).  

 

In-scattering (scattering from other rays into the path) Gas Emission 
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Radiation: Choice of Model 

• The optical thickness should be estimated before choosing a 
radiation model 

– The optical thickness τ = a.L 

• a  is the absorption coefficient (m-1) (Note: ≠ absorptivity of a surface) 

• L is the mean beam path length (m) 

• a = 0.25 to 0.3 m-1 for combustion product gases, = 0.01 m-1 for air and 
is proportional to absolute pressure 

• L is a typical distance between opposing walls 

• Optically thin (τ < 1) means that the fluid is partially transparent to 
thermal radiation 

• Optically thick (τ > 1) means that the fluid absorbs or scatters the 
radiation many times before it can interact with the surfaces 
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Radiation: Choice of Model 

• For optically thick media (τ > 1) the P1 model is a good choice 

– Assumes radiative intensity is independent of direction 

– The P1 model gives reasonable accuracy without too much computational effort 

• The Monte Carlo and Discrete Transfer models for any optical thickness 

– Both are ray tracing models 

– Discrete Transfer is much quicker as it pre-calculates rays in fixed directions but can be 
less accurate in models with long/thin geometries due to ray effects 

– Monte Carlo more expensive to run but recommended for complex geometries and 
multiband spectral modelling 

• Surface to Surface Model 

– Available for Monte Carlo and Discrete Transfer models 

– Neglects the influence of the fluid on the radiation field 

– Can significantly reduce the solution time 

 

 

 


