

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Introduction to ANSYS CFX

Realize Your Product Promise®

16.0 Release

ANSYS Introduction

Lecture Theme:

 It is possible to create user variables, expressions and functions with which to customize a CFD model, e.g. physical properties of fluids, physical models. With a knowledge of the underlying command language, it is possible to make changes more quickly.

Learning Aims:

- You will learn:
 - how to create Additional Variables (user variables)
 - how to set up equations and functions using CFX Expression Language (CEL)
 - the structure of CFX Command Language (CCL) and where it is used

so that you can extend your use of the software to deal with a greater variety of conditions and work more efficiently.

Customization in CFX

- CFX can be customized using:
 - Custom Variables (Additional Variables, or "AVs")
 - CFX Expression Language (CEL)
 - CFX Command Language (CCL)
 - Perl scripts

Additional Variables (AVs)

Introduction to ANSYS CFX

Realize Your Product Promise®

ANSYS[®]

Additional Variables

- Additional Variables (AVs) are non-reacting scalar components that do not directly influence the flow
- They can be solved for using a transport equation or an algebraic expression
 - Transported AVs require boundary and initial conditions
- Examples:
 - A tracer such as a dye or smoke
 - *Transport* Additional Variable. The AV is transported with the flow, but does not influence the flow
 - pH level
 - Algebraic Additional Variable. A function of other variables

 Introduction
 AVs
 CEL
 CCL
 Summary

 5
 © 2015 ANSYS, Inc.
 March 13, 2015
 ANSYS Confidential
 Summary

Additional Variables

- Additional Variables can be used to work-around some limitations:
 - In CFX-Pre integrated CEL functions, e.g. areaAve() cannot operate on an expression areaAve(Velocity * Density)@Inlet is not valid.
 Instead create an Algebraic AV equal to the expression and pass the AV to the function
- An Additional Variable can be used to show the variation in age of the fluid in the domain to indicate stagnant regions, for example
 - This is done by creating a transport AV "Age" with units of [s] and with Type = Volumetric (see next slide)
 - Inlet and initial values are zero
 - A source term with a value of 1 is set for the AV throughout the domain

	Introduction	AVs	CEL	CCL	Summary	>
6	© 2015 ANSYS, Inc.	March 13, 2015	ANSYS Confidential			

ANSYS

Additional Variables

- To create an AV right-click on Expressions, Functions and Variables > Additional Variables, or use the toolbar x
 - Variable Type
 - Specific: solved on per-unit-mass basis
 - Volumetric: solved on per-unit-volume basis
 - Unspecified: defined by algebraic expression
 - Units: describe the additional variable
 - Tensor Type: Scalar or Vector as necessary
- The AV must then be switched on in the Domain

AVs

On Fluid Models or Solid Models tab

Introduction

CEL ANSYS Confidential

ANSYS[®]

Domain – Equation Options

• Transport Equation

Introduction

© 2015 ANSYS, Inc.

8

- Kinematic Diffusivity laminar diffusion
- Turbulent diffusion always included

• Diffusive Transport Equation

$$\frac{\partial(\rho\phi)}{\partial t} = \nabla \bullet (\rho D_{\Phi} \nabla \phi) + S_{\phi}$$
Transient
Diffusion
Sources

AVs

March 13, 2015

Poisson Equation

CEL

ANSYS Confidential

- Used in electromagnetics

$$0 = \nabla \bullet (\rho D_{\Phi} \nabla \phi) + S_{\phi}$$

Diffusion Sources

- Algebraic or Vector Algebraic Equation
 - Vector expression for each component

CFX Expression Language (CEL)

Introduction to ANSYS CFX

Realize Your Product Promise®

ANSYS CEL

10

- CEL <u>C</u>FX <u>Expression</u> <u>Language</u>
 - Allows the user to create equations that can be functions of solution/system variables and can be used in CFX-Pre and CFD-Post
 - Example: Vinlet

 $((y | 1 [in]-10) ^2)* 1 [in/s]$

- The syntax rules are the same as those for conventional arithmetic.
- Operators are written as:
 - + (addition)
 (subtraction)
 * (multiplication)
 / (division)
 ^ (exponentiation)
- Variables and expressions are case sensitive, e.g. t vs T
- Availability of variables depends on physics, e.g. t only in transient models
- Can mix units but must be dimensionally consistent for addition and subtraction operations (example: 1.0 [mm] + 0.45 [yds] is OK)
- Some constants are available in CEL, e.g. e, g, pi, R

 Introduction
 AVs
 CEL
 CCL
 Summary

 11
 © 2015 ANSYS, Inc.
 March 13, 2015
 ANSYS Confidential
 Summary

ANSYS[®]

CEL - Creating Expressions

- Expression Editor
 - Create a library of expressions
 - Right-click in Definition window for drop-down lists of variables, functions, locations, constants...
 - Plot and evaluate expression to check behaviour
- Alternatively, expressions can be entered directly where used

Transport Properties Dynamic Viscosity		
Option	Value	~
Dynamic Viscosity	10.0 [kg m^-1 s^0.5] * Shear Strain Rate ^ 0.5	

Σ	Introduction	AVs	CEL	CCL	Summary
12	© 2015 ANSYS, Inc.	March 13, 2015	ANSYS Confidential		

ANSYS[®]

CEL – Conditional if Statement

- Using an "if" function ٠
 - Example: set inlet temperature to 300 K for the first 19 iterations then raise it to 320 K after 20 iterations

8 315	
₩	
0 5 10 15 20 25 30 aitem	
aitem	
Note: On the 20 th iteration inlet ter	ın –
	Note: On the 20 th iteration inlet ton

CEL Appendix contains some other useful functions —

Introduction AVs CEL CCL Summary 13 © 2015 ANSYS, Inc. March 13, 2015 **ANSYS** Confidential

User Functions: Example

- 1D linear and 3D interpolation functions
- Example: Timescale a function of iteration number-

Details of **Timestep**Definition Plot

0.1 • 0.08

de 0.06 **Sa** 0.04

■ 0.02

Plot Evaluate

ANSYS Integrate

Integrated Quantities

- Functions to evaluate a quantity on a location, e.g. volumeInt(Density)@tank
- Available in CFX-Pre and CFD-Post
 - in CFX-Pre the argument must be a variable and not an expression
- Some functions apply to a variable and some don't
 - area average of Cp on an isosurface: areaAve(Cp)@iso1
 - mass flow of particular fluid through a boundary: *oil.massFlow()@inlet*
- If location is a general mesh region the syntax is @REGION:<name>
- Phases/components: [<phase name>.][<component name>.]<function>@<locator>
 - Air.Nitrogen.massFlow()@outlet
- For vector functions a component and a local coordinate frame can be specified:
 - area_x()@boundary area projected in the x-direction
 - force_z_MyCoord()@wall z component of force on wall in coordinate frame "MyCoord"

Σ	Introduction	AVs	CEL	CCL	$\boldsymbol{\Sigma}$	Summary	>
15	© 2015 ANSYS, Inc.	March 13, 2015	ANSYS Confidential				

CFX Command Language (CCL)

Introduction to ANSYS CFX

Realize Your Product Promise®

NNSYS

What is CCL?

- **CFX Command Language**
 - object definition language underling all CFX products
 - object parameters define the "state" of an object
 - GUIs present object parameters in a contextual manner (parameters shown/hidden based on GUI selections)
- Allows for easy modifications
 - E.g. modifying an inlet velocity at a boundary
- Advanced functionality (without complexity)

AVs

March 13, 2015

CEL

i.e. loops and logic

Introduction

© 2015 ANSYS, Inc.

17

ANSYS^{*}

18

CCL Instruction Types

- **CCL Statements can be classified into three categories:** •
 - **Object and parameter definitions** 1.
 - 2. Actions
 - 3. Power Syntax

Daramatar Definition 4

Cutline Expressions Zetails of Solver Control Basic Settings Equ Advection Scheme Option Turbulence Numerics Option Convergence Control Min. Iterations Huid Timescale Control Physical Timescale	Solver Control In Flow Analysis 1 ation Class Settings Advanced Options High Resolution First Order Physical Timescale 0.002 [s]		Solver Solver Control Output Control Output Control C	FLOW: Flow Analysis 1 8replace SOLVER CONTROL Turbulence Numerics = Fin ADVECTION SCHEME: Option = Upwind END CONVERGENCE CONTROL Length Scale Option = C Maximum Number of Iter Minimum Number of Iter Timescale Factor = 1.0 END CONVERGENCE CONTROL Residual Target = 1.2-4 Residual Type = RMS END DYNAMIC MODEL CONTROL Global Dynamic Model Co END END END END END	t: st Order : onservative ations = 100 stions = 1 Timescale : DL: ntrol = Yes Clear Close	
Introduction	AVs	$\boldsymbol{\boldsymbol{\succ}}$	CEL	CCL	Summary	>
© 2015 ANSYS, Inc. N	Narch 13, 2015		ANSYS Confidential			

Command Editor

?

CCL Instruction Types

- 2. Action Command:
 - E.g. a CFD-Post session file can include actions such as >print

3. Power Syntax:

 Power Syntax commands are identified in CCL by the special character "!" at the start of each line.

🗑 Command Editor	2 🛛
! \$Pin = massFlowAve("Pressure","in"); ! \$Pout=massFlowAve("Pressure","out"); ! \$dp = \$Pin - \$Pout; ! print "The pressure drop is \$dp\n";	

Data Hierarchy

Similar rules to many programming languages. Some rules in the CCL Appendix and complete list in the Help documentation (advanced search "Simple Syntax Details" for the CFX application). Main points are:

- Case Sensitivity
 - Everything in the file is sensitive to case
- Effect of spaces
 - Spaces before or after a name are not part of the name
 - Single spaces inside a name are significant
 - Multiple spaces and tabs inside a name become a single space

• CCL names definition

- First character must be alphabetic
- Subsequent characters can be any number of be alphabetic, numeric , space

 Introduction
 AVs
 CEL
 CCL
 Summary

 21
 © 2015 ANSYS, Inc.
 March 13, 2015
 ANSYS Confidential
 Summary

Introduction

© 2015 ANSYS, Inc.

22

- CCL can increase efficiency
 - Frequently used physics definitions can be saved to a text file and imported into CFX-Pre
 - Settings in CFD-Post can be saved to a state file for repeated use. A state file is created by default in Workbench

CEL

ANSYS Confidential

CCL Appendix shows further options

AVs

March 13, 2015

- Customization is possible with the addition of user variables, expressions and functions
- CCL is the language which links the user with the software.
- Sometimes it is more efficient to bypass the GUI and manipulate the CCL manually

Introduction to ANSYS CFX

Realize Your Product Promise®

ANSYS Useful Functions

The *inside()* function returns 1 when inside the specified location and 0 when outside

• Useful to limit the scope of a function to a subdomain or boundary

The *step()* function return 1 when the argument is positive and 0 when the argument is negative

- Useful as an on-off switch
- *if()* function can also be used as a switch

areaAve() and massFlowAve() are used to evaluate the average of a quantity on a location

- *areaAve()* is an area-weighted average. It is usually used on wall boundaries and when the quantity is not "carried with the flow", e.g. Pressure at an outlet, Temperature on a wall
- *massFlowAve()* is an average weighted by the local mass flow. It is usually used to evaluate quantities that are "carried with the flow", e.g. Temperature at an outlet

Introduction to ANSYS CFX

Realize Your Product Promise®

CCL is used throughout CFX and other CFX products, a few examples are:

- CFX-Pre: Physics definition, Session Files
- CFX-Solve: Command File (echoed in the OUT file)
- CFX-Post : State files, Session Files
- CFX-TurboGrid: State Files

- Parameter Values
 - STRING
 - A string beginning with \$ is a Power Syntax (Perl) variable
 - Following a \$, the characters [,],{ and } terminate the preceding Perl variable name
 - A string beginning with # is a comment
 - STRING LIST
 - A list of string items separated by commas, e.g names = one, two, three, four
 - INTEGER
 - If a real is specified when an integer is needed, the real is rounded to the nearest integer.
 - REAL LIST
 - All items in the list must have the same dimensions
 - LOGICAL
 - YES/NO, TRUE/FALSE, 1/0 or ON/OFF are all accepted as are initial letter variants Y, T, N, F

Continuation character \

28 © 2015 ANSYS, Inc. March 13, 2015

Quick Modifications

 Users can modify a .def file manually using CCL instead of using the CFX-Pre GUI

- Two alternate methods of modifying a DEF file:
 - Solver GUI
 - Command Lines

Quick Modifications

SOLVER METHOD

30 © 2015 ANSYS, Inc. March 13, 2015

ANSYS Confidential

Quick Modifications

COMMAND LINE METHOD

- 1. In the CFX-Launcher, click "Tools > Command Line"
- In command screen type: cfx5cmds -read -def *filename*.def -text *ccl1*
- 3. Edit ccl1 in notepad and save
- 4. In command screen type:

cfx5cmds -write -def filename.def -text ccl1

ANSYS*

Quick Modifications

- Using a CCL file
 - Create a text file with modified CCL
 - "Save As" .ccl file, (e.g. "bc1.ccl")
 - On the *Solver* tab of the Run Definition form in the Solver manager, enter an *Argument* as follows:
 - -ccl bc1.ccl
 - Or, start the solution from the command line, using:

cfx5solve -def run.def -ccl bc1.ccl

FLOW: Flow Analysis 1 DOMAIN: R1 &replace BOUNDARY; R1 Blade Boundary Type = WALL Create Other Side = Off Frame Type = Rotating Interface Boundary = Off Location = BLADEBOUNDARY CONDITIONS: HEAT TRANSFER: Fixed Temperature = 100 [C] Option = Fixed Temperature END. MASS AND MOMENTUM: Option = No Slip Wall END. WALL ROUGHNESS: Option = Smooth Wall END. END. END. END. END.

ANSYS Confidential