
1 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

16.0 Release

Appendix A:

Scripting and Automation

Introduction to ANSYS CFX

2 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Overview

• Introduction

• CFX User Environment (CUE) architecture

• State and Session Files

• Introduction to Perl

• CCL and Perl

• “Power Syntax”

• Perl subroutines

• Macros

3 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Introduction

• Need for scripting and automation

– Increase productivity by simplifying repetitive tasks

– Standardize practices

– Save and re-use data

– …

4 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

CUE is the common development
environment for all CFX products.

CUE applications employ a client-server
architecture.

The user interfaces with the “client”,
while the “server” processes the data.

The most common client is a graphical
user interface, but line and batch
interfaces also exist.

CFX User Environment

Server

Client

User Input

C
C

L

5 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Default mode of operation

Graphical client driven by user input

User loads results, states, runs sessions
and macros

GUI Mode

Engine

GUI

User

C
C

L

6 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Launch session from command line or a
script by specifying ‘-line’ flag

• e.g. >cfx5post –line

Client includes viewer and a command
line input

CCL objects and commands are input
one line at a time

Allows interactive scripts with control
outside of script

Line input modes exist for TurboGrid,
Pre, Post, Solver (solver uses –ccl flag)

Line Input Mode

Engine

Line Input / Viewer

User/Script

C
C

L

7 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Closed session (not interactive)
launched from command line or script

• Direct to engine

No viewer

Session file specified at run time

• Session file may include
interactive commands, load
states, results, etc.

• Must end with a >quit statement

Batch Mode

Engine

Script

C
C

L

8 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Session Files

• Session files contain a list of commands and CCL
objects

– Can record the commands executed during a
session to a file and then play back the file at a later
date or in batch mode.

– Can write/modify session files in a text editor

– Produced in Pre, Post, TurboGrid

– Session files can perform actions, for example
Input/Output

9 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

State Files

• State files are a snap-shot of the current state of
all objects

– Can be created to save or load a number of objects

– Contain CCL objects-parameter definitions

– Can write/modify state files using a text editor

– Produced in Pre, Post, TurboGrid

– State files cannot perform actions

10 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

16.0 Release

Introduction to Perl

Introduction to ANSYS CFX

11 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

What is Perl?

• Perl is a public domain scripting language that
combines the features and purposes of many
command languages and tools.

– It is a fully featured programming language (even supports
Object Oriented programming)

– Has replaced shell scripting, awk, sed, regexp, grep, etc. inside
of CFX

– Good text handling and parsing capabilities

12 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

• Advantages
– Powerful, consistent, fully-

featured programming language

– System interoperability
(Windows/Unix)

– Strong user base & public
support
• Many useful Perl modules

(subroutine/object libraries) freely
available

• Disadvantages

– It is an interpreted language
• Can’t ‘hide’ code

• Slow for computationally intensive
processes

– Many ways to do the same
thing
• Easy to write ‘obfuscated’ Perl

Why use Perl?

13 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Perl References

• Books:
– Introductory

• Randal L. Schwartz et al, Learning Perl, O'Reilly and Associates, Inc.

• Hoffman, Perl 5 For Dummies, IDG Books, ISBN 0-7645-0460-6

– The Perl Bible
• Larry Wall et al, Programming Perl, O'Reilly and Associates, Inc.

– Advanced Use
• S. Srivivasan, Advanced Perl Programming, O'Reilly and Associates, Inc.

• Web:
– www.perl.org, www.perl.com, www.perldoc.perl.org

– newsgroups

http://www.perl.org/
http://www.perl.com/
http://www.perldoc.perl.org/

14 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Perl Example

#!/usr/bin/perl

print “What is your name? “;

$name = <STDIN>;

chomp($name);

if ($name eq “Steve”) {

 print “Hi Steve! Good to see you again!\n”;

#friendly greeting

} else {

 print “Hello, $name. Nice to meet you.\n”;

#ordinary greeting

}

15 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Syntax Basics

• Perl statements are terminated by a semicolon (;)

• Whitespace and indentation do not matter
– Except for making the code readable...

• Everything is case sensitive

• Comments are preceded by a pound sign (#)
– There are no multi-line comments (e.g. /* [..] */ in C++)

16 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Perl Variables

• Variable type is implied, not declared

• Leading character determines return type

– Scalars: $…

• Denotes a ‘single’ value

• Can be a number, character string, pointer, array element, etc.

– Linear Arrays: @…

• Elements reference by position

• Elements may be any type (scalar, array, hash)

– Hash (associative array): %

• Elements referenced by lookup (associative)

• Elements may be any type

• Very useful for nested data

17 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Scalar Variables $

• Scalars are single valued numbers or strings

• Scalar variable names are of the form $varName
– The first character in varName must be a letter

• All numbers treated internally as double-precision
floats. Format is flexible:
– 1.25, -5.34e34, 12, -2001, 3.14E-5

• Variable assignment uses the equal sign (=)
– $pi = 22/7.0 #close enough

18 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Strings “…”, ‘…’

• Strings are a quoted group of characters

– double-quoted (“) and single-quoted (‘) strings are handled slightly
differently.

• Double quoted strings act a lot like strings in C

– Can include ‘backslash escapes’ to represent special characters.

• $greeting = “hello world\n”; # hello world, newline

Escape Character Meaning

\n Newline

\t Tab

\\ literal \

\" literal "

\xnn hex ascii value nn

19 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Arrays (lists)

• An array is an ordered list of scalar data

• Arrays can have any number of elements

– Perl deals with all memory management issues

– Arrays are zero indexed

• The @ sign denotes an array variable

– @evens=(2,4,6,8);

– @numbers = (1..5); # (1,2,3,4,5)

• Access a array elements using $listName[indices];

– $four = $evens[1];

– ($four,$five) = $numbers[3,4];

20 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Arrays (lists)

• To determine the size of an array, use ‘scalar(@listName)’

• Useful array functions:

‒ push, pop: To add/remove elements from the high end of a list
• push(@list,$newValue) or

push(@list,@moreElements)

• $oldValue=pop(@list)

‒ shift, unshift: To add/remove elements from the low end of a list

‒ reverse: reverses the order of the elements in a new list
• @backwardList=reverse(@forwardList)

‒ sort: sorts the elements in ASCII order into a new list
• @ordered=sort(@unordered)

21 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Scalar Variable Operators

• Perl uses standard maths operators
– add(+), subtract(-), multiply(*), divide(/), exponentiat4(**), mod(%)

– increment (++) and decrement (--)

– binary assignment supported (+=,*=, etc.)
$a = $a + 1; #

$a += 1; # All are equivalent

$a++ #

• String operators
– concatenation (. or .=)

“hello” . “world” #gives “helloworld”
“fred” . “ “ . “wilma” #gives “fred wilma”

– string repetition (x)
“la” x 3 #gives “lalala”
“foo” x (4 + 1) #gives “foofoofoofoofoo”

22 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Perl Functions

• Perl has many, many built in functions

‒ Functions for:

• Text processing, numeric functions, process control, list processing, file
IO, data processing, etc.

‒ No distinction between built-in functions & user-defined
subroutines

• They all:
‒ Have a name

‒ Return a value or list of values

‒ Can accept arguments

$res = log(123);

$angle = atan2(.5,-.5);

push(@myList,2,4,7);

$value = pop(@myList);

$textBit = substr($myString,3,2);

23 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Logic in Perl

• Perl contains a number of control structures (if, else, etc.)
based on logic expressions

• The following is ‘true’:

– Any string except for “” and “0”.

– Any number except 0.

– Any reference is true

• Anything else is false.

• Tests in control structures can contain any expression or
operators and the result is evaluated using the above rules

24 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Scalar Comparison Operators

• Comparison operators come in numeric and string varieties

• Make sure you use the right one…

– e.g. ‘(30 le 7)’ is true. It’s evaluated using ascii precedence.

Comparison Numeric String

Equal == eq
Not equal != ne

Less than < lt

Greater than > gt
Less than or equal to <= le

Greater than or equal to >= ge

25 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

if...

• if:
if (some expression) {
 statement 1;
 statement 2; ...
} elsif (another_expression) {
 statement 3; ...
} else {
 statement 4;
 statement 5; ...
}

print “How old are you?”;
$a = <STDIN>;
chomp($a);
if ($a < 18) {
 print “Sorry, you’re too young.\n”;
 die;
} else {
 print “Welcome…\n”;
}

26 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

for… & while…

• for:
for (initial_exp; test_exp; increment_exp) {
 statement 1;
 statement 2; ...
}

for ($I = 1; $I < 10; $I++) {
 print “$I\n”;
}

• while:
while (some expression) {
 statement 1;
 statement 2; ...
}

print “How old are you?”;
$a = <STDIN>;
chomp($a);
while ($a > 0) {
 print “At one time, you were $a years old.\n”;
 $a--;
}

27 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

foreach...

• foreach is a useful for walking through the elements of a list
foreach $var (@some_list) {
 statement 1;
 statement 2; ...
}

@a = (3,5,7,9);
foreach $number (@a) {
 $number += 2;
} # @a is now (5,7,9,11);

• Any changes to the scalar variable affect the list

28 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Other Logical Operators

• ‘!’ will negate any logical expression (i.e. ‘not’)

• && is a logical ‘and’

• || is a logical ‘or’

29 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Basic I/O

• The connection to an input or output location is called a
handle.

• Filehandles are created using open()
– open for read: open(MYFILE,”infile.dat”);

– open for write: open(MYFILE,”>outfile.dat”);
• Will fail if file exists

– open for append: open(MYFILE,”>>logfile.dat”);

• open() returns true/false for success/failure
 open(IN,”infile.dat”) || print “Error: couldn’t open

file\n”;

30 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Basic I/O

• Write to a filehandle by printing to it
print LOGFILE “Done current task.\n”;

• Read from a filehandle by putting it inside <...>

– Assigned to scalar – returns next line in file & empty string at end

– Assigned to array - returns all lines

open(INFILE,”myfile.dat”);

while($line = <INFILE>) {

 print “Just read: $line\n”;

}

open(INFILE,”myfile.dat”);

@allLines = <INFILE>;

foreach $line (@allLines) {

 print “The file contained: $line\n”;

}

31 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Basic I/O

• close(FILEHANDLE) when done with a file

• STDIN, STDOUT, STDERR are automatically managed
filehandles.

• The chomp($a) function removes the last character from a
string if it is a newline (\n)

print “How old are you?”;
$a = <STDIN>;

chomp($a);

if ($a < 18) {

 print “Welcome, my child.\n”;
} else {

 print “Wow, $a is pretty old.\n”;

}

32 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

External Processes

• Handles can also be external apps

• Perl can launch and interact with external processes

– System() spawns an external process and waits for it to finish

– Can open a command as a handle, and interact via STDIN.

Command is executed when handle is closed.

$logfile = “logfile.dat”;
system(“grep -i error $logfile > errors.dat”);

open(SOLVER,|cfx5solve -def $myRun);

close(SOLVER); #waits until done to continue

33 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Regular Expressions

• Perl can use regular expressions for general text pattern
matching and replacement.

• Complex and ugly, but powerful
print “Any last requests? ”;
chomp($a = <STDIN>);

if ($a =~ /^y/i) { # does the input begin with y

 print “What is it?”;
 <STDIN>;

 print “Sorry, I can’t do that.\n”;
}

print “Ready, aim, fire !\n”;

$string = “foot fool buffoon”;
$string =~ s/foo/bar/g; # string is now “bart barl bufbarn”

$line = “X,Y,Z,1,,1.234,34”;
@fields = split(/\,/, $line); # @fields is (“X”,”Y”,”Z”,”1”,””,”1.234”,”34”)

34 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Subroutines

• Subroutines are just user defined functions. Declared with
‘sub’.

• Subroutines return one or more values from a return
statement

– … or the value of the last statement if no explicit return.

• Invoked by calling subName(args).

sub subName {

 statement 1;

 statement 2; [...]

}

$result = doSomething($a,$b);

35 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Subroutines

• Arguments are passed to a subroutine using the
@_ list.

• Must pass lists and arrays by reference.

sub addThreeNumbers {

 ($a, $b, $c) = @_;

 $result = $a + $b + $c;

 return $result;

}

36 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

References

• Use ‘\’ in front of a variable to create a scalar reference
(pointer).
– $listRef = \@myList;

• De-reference by using a variable reference type ($, @ or %)

– push(@$listRef,”new Value”);

• Directly access elements in a reference using -> notation

– For arrays: $listRef->[$index]

– For hashes: $hashRef->{$key}

37 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

References

sub printHash {

 ($hashRef) = @_;

 foreach $key (keys(%$hashRef)) {

 print “Key: $key, Value: “ . $hashRef->{$key} .
“\n”;

 }

}

%myHash = (“a” => “b”, “c” => “d”);
printHash(\%myHash);

38 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Variable Scope

• By default, all variables have global scope. Can create
private variables using ‘my’ specification.

• Put ‘use strict;’ in a script to force explicit scoping of all
variables

– All variables must be declared using ‘my’ or ‘local’

– Catches mis-typed variable names

sub addThreeNumbers {

 my ($a, $b, $c) = @_;

 my $result = $a + $b + $c;

 return $result;

}

39 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Libraries and Modules

• Significant benefit of Perl is the ability to re-use other
people’s work.

• You can include a set of subroutines from another file with
require ‘filename.pl’

• A wide range of modules are publicly available

– www.cpan.org

– e.g. matrix algebra, HTML parsing, database manipulation, graphing,
GUIs, 3rd party interfaces

40 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

External Perl Scripting

• External Perl scripts can be used to drive the CFX-Solver for
multiple runs, optimisation loops, etc.

• The CFX-Solver can be sent CCL through the command line to
over-ride local settings.

– cfx5solve -ccl <filename | ->

– ‘-’ means read from stdin

– cfx5solve -def duct.def -ccl special.ccl

41 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

External Perl Scripting

• CFX-Pre, CFD-Post and TurboGrid can also be launched from
within a Perl script and automatically run a session file to
perform quantitative or graphical post-processing in batch
mode.
system(“cfx5post -batch mysession.cse results.res”);

Or

open(CFDPOST, |cfx5post –line);

 print CFDPOST …CCL COMMANDS…

 …

close(CFDPOST);

42 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

CCL & Perl

• CCL includes `Power Syntax` as a programming language

– Indicated by a “!” at the start of the line

• Power Syntax is the Perl programming language

– Full support for loops, if/then/else, subroutines and much more

! $speed = 2.0;

! if ($speed gt 1.5) {

! $turbulence = on;

! }

...

BOUNDARY: inlet1

 Normal speed in = $speed [m/s]

 ! if ($turbulence == on) {

 Eddy length scale = 0.001 [m]

 ! }

END

! $numSteps = 20;

! for (my $i=0; $i<=$numSteps; $i++) {

! $transparency = $i/$numSteps;

BOUNDARY:Default

 Transparency = $transparency

END

!}

43 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Power Syntax in the Solver

• The Solver accepts Power Syntax (Perl)

– Embed Perl in the CCL to pass it to the Solver

– Parsed as one chunk

– Loop over the objects/parameters modifying the data, the last
value wins

– The final state is sent to the solver for execution

• Primary use is to define and use variables from external
sources to modify existing objects

44 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Power Syntax in CFD-Post

• CFX-Pre and CFD-Post operate more interactively than the
solver

– CCL is treated as a ‘session’ not a ‘state’

– Can have actions

– Have a number of custom of Perl functions defined

• Can create macros (Perl subroutines) that contain power
syntax and standard CCL

– Read in subroutine definition from a session file

– GUI definition in header

45 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

CFD-Post Perl Functions

• See CFD-Post Advanced documentation

• Quantitative functions

– All CEL extended functions have power syntax equivalents (e.g.)

• $val = massFlow(location);

• $val = areaAve(variable,location);

– Just return the value

• Evaluate the value and units of any single-valued CEL
expression

– ($val,$units) = evaluate(“myExpression”);

– Preferred to use this instead of the quantitative functions

• More general and integrated with CEL

46 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

CFD-Post Perl Functions

• Determine the value of any CCL parameter in the post-
processor

– $val = getValue(“OBJECT:NAME”,“Param Name”);

• List currently defined subroutines to command window

– showSubs

• List currently defined power syntax variables and values

– showVars

47 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Post Macros

• Power Syntax macros can be loaded as “macros” in Pre and
Post

• A macro is basically a session with a user interface

• User interface elements are defined in the macro header

48 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

• Header defines macro name,
subroutine and parameters

• Choice of parameter type

#Macro GUI begin

macro name = A simple macro

macro subroutine = mySub

macro parameter = Var

type = variable

default = Y

macro parameter = Location

type = location

location type = plane

Macro GUI end

! sub mySub {

! ($variable, $plane) = @_;

!

! print "variable = $variable, plane =

$plane\n";

!}

Macro Header

49 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Value Definition

macro name = <name> The macro identifier to appear in the macro combo

macro subroutine = <subname> The subroutine to call

macro report file = <filename> The file generated by the macro (if any). This enables the

“View Report” button, which attempts to load the file in a

text/html browser.

macro related files = <file1>, <file2> Other related files to load when loading this macro. This is

useful when your macro uses subroutines from other files

macro parameter = <name>

#type = <type>

#<option1> = <val>

#<option2> = <val>

#.....

Specifies a GUI widget for a subroutine parameter. The type

of widget is determined by the type of parameter. For each

type there can be several possible options. The order of the

GUI widgets must match the order of the arguments for the

subroutine.

Macro Header

50 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Type Option Example

string default My String

integer default

range

10

1, 100

float default

Macro Header

51 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

• CFD-Post

– This example exports four
mass flow rate values to a text
file

Perl Examples in CFX #1

52 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

 • CFD-Post

– This example creates 10 cut planes
colored by pressure through a
domain

Perl Examples in CFX #2

53 © 2015 ANSYS, Inc. February 23, 2015 ANSYS Confidential

Workshop Appendix A

This workshop takes you through the use of session files and scripts to run a series of
simulations of flow over a backward facing step to compare the results obtained with
different turbulence models.

3.8 x H 40 x H

Outlet

q

4 x H
Inlet

H

Flow Separation

