

Introduction to ANSYS Meshing

Realize Your Product Promise®

ANSYS Introduction to ANSYS Meshing

In this lecture we will learn:

- Meshing Methods for Part/Body Meshing
 - Assembly Meshing covered separately
- Methods & Algorithms for;
 - Tetrahedral Meshing
 - Hex Meshing
 - 2D Meshing
- Meshing Multiple Bodies
 - Selective Meshing
 - Recording Meshing Order

NNSYS®

Which method to choose?

Why Multiple Methods?

- Choice depends on :
 - Physics
 - Geometry
 - Resources
- Mesh could require just one or a combination of methods.

Hex (3d) or Quad (2d) cells used to mesh simple regions

Tet (3d) or Tri (2d) cells used here to mesh **তেপ্দি চা**ৰ্ক্ষণegion

- Meshing Methods for Part/Body Meshing
 - Assembly Meshing covered separately
- Methods & Algorithms for
 - Tetrahedral Meshing
 - Hex Meshing
 - 2D Meshing
- Meshing Multiple Bodies
 - Selective Meshing
 - Recording Meshing Order

NNSYS°

Patch Conforming versus Independent

Patch Conforming

• Clean CAD, Accurate surface mesh

Patch Independent

• Dirty Geometry, defeatured surface mesh

Tetrahedrons Methods

Patch Conforming

- Bottom up approach: Meshing process
 - Edges → Faces → volume
- All faces and their boundaries are respected (conformed to) and meshed (except with defeaturing tolerance)
- Good for high quality (clean) CAD geometries
 - CAD cleanup required for dirty geometry
- Sizing is defined by global and/or local controls
- Compatible with inflation

To access it

- Insert Method
 - Set to Tetrahedrons
 - Set to Patch Conforming

Patch Independent

- Top down approach: Meshing process
 - Volume meshed first → projected on to faces & edges
- Faces, edges & vertices not necessarily conformed
 - Controlled by tolerance and scoping of Named Selection, load or other object
- Good for gross de-featuring of poor quality (dirty)
 CAD geometries
- Method Details contain sizing controls
- Compatible with inflation

Details of "Patch Conforming Method" - Method 9

Ξ	Scope			
	Scoping Method	Geometry Selection		
	Geometry	1 Body		
	Definition			
	Suppressed	No		
	Method Tetrahedrons			
	Algorithm	Patch Conforming 🔹 💌		
Element Midside Nodes Patch Conforming Patch Independent		Patch Conforming Patch Independent		

To access it

- Insert Method
 - Set to Tetrahedrons
 - Set to Patch Independent

Tetrahedrons Method : Control

Patch Conforming - Sizing

- Mesh sizing for the Patch Conforming algorithm is defined by Global & Local Controls
- Automatic refinement based on curvature and/or proximity accessible in Global Controls
 - Details of Global & Local Controls covered in separate lectures
- Choice of surface mesher algorithm in global controls

De	tails of "Mesh"		ņ
	Display		
	Display Style	Body Color	
	Defaults		
	Physics Prefere	CFD	
[Solver Preferen	Fluent	
[Relevance	0	
=	Sizing	•	
[Use Advanced	On: Proximity and Curvature	
	Relevance Cent	Medium	
[Initial Size Seed	Active Assembly	
	Smoothing	Medium	
	Transition	Slow	
	Span Angle Ce	Fine	
	Curvature N	Default (18.0 °)	-
	Num Cells A	Default (3)	
	Proximity Size F	Faces and Edges	
	Min Size	Default (3.172e-005 m)	
	Proximity Mi Default (3.172e-005 m)		
	Max Face Size	Default (3.172e-003 m)	
	Max Size	Default (6.3441e-003 m)	
	Growth Rate	Default (1.20)	
Į	Minimum Edge	9.4248e-003 m	
Ŧ	Inflation		
	Assembly Meshi	ng	
	Method	None	
	Patch Conformin	a Options	
	Triangle Surfac	Program Controlled 🔹	
+	Patch Independe	Program Controlled	
÷	Advanced	Advancing Front	
	Defeaturing		
	Pinch Tolerance	Default (2.8548e-005 m)	
	Generate Pinch	No	
	Automatic Mes	On	

ANSYS°

Tetrahedrons Method : Control

Patch Independent - Sizing

- Sizing for the Patch Independent algorithm defined in Patch Independent Details
- Automatic curvature & proximity refinement option

Defeaturing Control

- Set Mesh Based Defeaturing On
- Set Defeaturing Tolerance
- Assign Named Selections to selectively preserve geometry

Name Selec. assigned & defeaturing Tol = 0.02 Features > 0.02m respected

Defeaturing Tolerance off

ANSYS Tetrahedrons Method : Algorithm comparison

Delaunay mesh - smooth growth rate

Patch independent : details ignored

Geometry with small details

Agenda

- Meshing Methods for Part/Body Meshing
 - Assembly Meshing covered separately
- Methods & Algorithms for

 - Hex Meshing
- - Recording Meshing Order

3 methods available

- Sweep •
- Multizone ٠
- **Hex Dominant** ٠
 - (not recommended ٠ for CFD)

ANSYS Hexa Mesh - Introduction

Hex Meshing

- Reduced element count
 - Reduced run time
- Elements aligned in direction of flow
 - Reduced numerical error

Initial Requirements

- Clean geometry
- May require geometric decomposition

Tetra mesh -	48 000 Cells Statistics	
	Nodes	9296
	Elements	48738
	Mesh Metric	Skewness
	Min 🗌	8.0759120277496E-05
	Max	0.809031191410968
	Average	0.236026063758096
	Standard Deviation	0.123317626353581
Hexa mesh -	19 000 Cells Statistics	
	Nodes	21348
	Elements	19614
	Mesh Metric	Skewness

Min

Max

Average

Standard Deviation

1.79292772803879E-02

0.606963936309246

0.118321537967619

Mesh Method & Behavior

- Generates hex/wedge elements
- Meshes source surfaces -> Sweeps through to the ٠ target
 - Body must have topologically identical source ٠ and target faces
- Side faces must be mappable ٠
 - A sweep path must be identified
- Only one source and one target face is allowed ٠
 - Alternative 'thin' sweep algorithm can have multiple source & target faces

To access it

- Insert Method
 - Set to Sweep •

De	Details of "Sweep Method" - Method			
Ξ	Scope			
	Scoping Method	Geometry Selection		
	Geometry	1 Body		
Ξ	Definition			
	Suppressed	No		
	Method	Sweep		
	Element Midside Nodes	Use Global Setting		

Sweep Meshing

Source & Target selection

Automatic

- Source & Target faces identified automatically
 - Requires that the mesher find the sweeping direction
- Manual source & Manual source and target
 - User selection
 - Source face colored in red
 - Target face colored in blue
 - Rotational Sweeping
 - Sweep around an axis
 - Requires selection of both Source & target

Note

• Specifying both Source & Target accelerate meshing

Details of "Sweep Method" - Method 🛛 🗣			
Ξ	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Body	
	Definition		
	Suppressed	No	
	Method	Sweep	
	Element Midside Nodes	Use Global Setting	
	Src/Trg Selection	Automatic 🗾 💌	
	Source	Automatic	
	Target	Manual Source Manual Source and Target	
	Free Face Mesh Type	Automatic Thin	
	Туре	Manual Thin	
	Sweep Num Divs	Default	
	Sweep Bias Type	No Bias	
	Element Option	Solid	

Define the nbr of intervals on the side face(s)

Sweep Meshing

Source & Target selection

Automatic Thin & Manual Thin

- Alternate sweep algorithm
- Advantages
 - Sweep multiple Source & Target faces
 - Can perform some automatic defeaturing

• Limitations

- X For multibody parts only one division allowed across the sweep
- X Inflation not allowed
- X Sweep bias not allowed

Manual Source and Target

Manual Thin

Automatic Thin

Use of Inflation

• Defined on source face (NOT on target one)

 \checkmark

X X

- From boundary edges (2D)
- Swept through volume

De	Details of "Sweep Method" - Method			
-	Scope			
	Scoping Method	Geometry Selection		
	Geometry	1 Body		
-	Definition	^		
	Suppressed	No		
	Method	Sweep		
	Element Midside Nodes	Use Global Setting		
	Src/Trg Selection	Automatic		
	Source	Program Controlled		
	Target	Program Controlled		
	Free Face Mesh Type	Quad/Tri		
	Туре	Number of Divisions		
	Sweep Num Divs	Default		
	Sweep Bias Type	No Bias		
	Element Option	Solid		

Details of "Sweep Method" - Method 🛛 🗛			
=	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Body	
- Definition			
	Suppressed	No	
	Method	Sweep	
	Element Midside Nodes	Use Global Setting	
	Src/Trg Selection	Manual Source	
	Source	1 Face	
	Target	Program Controlled	
	Free Face Mesh Type	Quad/Tri	
	Туре	Number of Divisions	
	Sweep Num Divs	Default	
	Sweep Bias Type	No Bias	
	Element Option	Solid	

Multizone Meshing

Mesh Method & Behavior

- Based on blocking approach (ANSYS ICEM CFD Hexa)
- Automatically decomposes geometry into blocks
- Generates structured hexa mesh where block topology permits
 - Remaining region filled with unstructured Hexa Core or Tetra or Hexa dominant mesh
- Src/Trg Selection
 - Automatic or Manual source selection
 - Multiple source faces
 - Select Target faces as "Source"
- Compatible with 3D Inflation

To access it

Insert Method → Set to Multizone

.8 C	2015 ANSYS, Inc.	February 12	2, 2015
------	------------------	-------------	---------

tails of "MultiZone" - Met	д		
Scope			
Scoping Method	Geometry Selection		
Geometry	1 Body		
Definition			
Suppressed	No		
Method	MultiZone		
Mapped Mesh Type	Hexa		
Surface Mesh Method	Program Controlled		
Free Mesh Type	Not Allowed		
Element Midside Nodes	Use Global Setting		
Src/Trg Selection	rg Selection Manual Source		
Source Scoping Method	Geometry Selection		
Source	4 Faces		
Sweep Size Behavior	Sweep Element Size		
Sweep Element Size	Default		
Advanced			
Preserve Boundaries	Protected		
Mesh Based Defeaturing	On		
Defeaturing Tolerance	Default(1.586e-005 m)		
Minimum Edge Length	9.4248e-003 m		
Write ICEM CFD Files	No		

Multizone Meshing

Details of "Mult Scope

Hexa

Mapped Mesh Type

Determines which elements to use

- Hexa
 - Default
 - Only Hexahedral elements are generated
- Hexa/prism ٠
 - For quality and transition, triangles will be inserted on the surface mesh (sources)
- Prism
 - Only prisms will be generated ٠
 - Useful when the adjacent volume is filled in ٠ with tet mesh

tails of "MultiZone" - Met	hod P	
Scope		
Scoping Method	Geometry Selection	
Geometry	1 Body	
Definition		
Suppressed	No	
Method	MultiZone	
Mapped Mesh Type	Hexa 🔻	
Surface Mesh Method	Неха	
Free Mesh Type	Hexa/Prism Prism	
Element Midside Nodes	Use Global Setting	
Src/Trg Selection	Manual Source	
Source Scoping Method	Geometry Selection	
Source	4 Faces	Coorectrus
Sweep Size Behavior	Sweep Element Size	Geometry
Sweep Element Size	Default	
Advanced		
Preserve Boundaries	Protected	
Mesh Based Defeaturing	On	
Defeaturing Tolerance	Default(1.586e	
Minimum Edge Length	9.4248e-003 m	
TEM CFD Files	No	
lexa	Hexa - Pr	rism 0

Multizone Meshing

Surface Mesh Method

Specify a method to create the surface mesh

- Uniform
 - Uses a recursive loop-splitting method which creates a highly uniform mesh
- Pave
 - Creates a good quality mesh on faces with high curvature, and also when neighboring edges have a high aspect ratio
- Program controlled
 - Combination of Uniform and Pave methods
 - depends on the mesh sizes set and face properties

	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Body	
Ξ	Definition	-	
	Suppressed	No	
	Method	MultiZone	
	Mapped Mesh Type	Hexa	
	Surface Mesh Method	Program Controlled 🔹	1
	Free Mesh Type	Program Controlled	
	Element Midside Nodes	Uniform	
	Src/Trg Selection	Mapual Source	
	Source Scoping Method	Geometry Selection	
	Source	4 Faces	
	Sweep Size Behavior	Sweep Element Size	Geomet
	Sweep Element Size	Default	
Ξ	Advanced		
	Preserve Boundaries	Protected	
	Mesh Based Defeaturing	On	
	Defeaturing Tolerance	Default(1.586e-	
	Minimum Edge Length	9.4248e-003 m	
	Write ICEM CFD Files	No	
-			
E			
- the			
	iform		

NNSYS ®	Multizone	e Mesh	ing
Sweep		Sizing Use Advanced Size Function Relevance Center Initial Size Seed Smoothing Transition Span Angle Center Curvature Normal Angle Num Cells Across Gap	On: Proximity and Curvature Coarse Active Assembly Medium Slow Fine Default (18.0 °) Default (3)

2.5 D Type of Meshes

Multizone allows to have effect of global size function on only just Source faces

- Sweep Size Behavior
 - Sweep Element Size
 - Allows to select a swept mesh size on sides irrespective of Source mesh sizing
 - Sweep Edges
 - Allows for Edge Selection for biasing

21	© 2015 ANSYS, Inc.	
----	--------------------	--

Details of "MultiZone" - Method 7					
Ξ	Scope	соре			
	Scoping	Geometry Selection			
	Geometry	1 Body			
Definition					
	Suppressed	No			
	Method	MultiZone			
	Mapped Mesh Type	Hexa			
	Surface Mesh Method	Program Controlled			
	Free Mesh Type	Not Allowed			
	Element Midside Nodes	Use Global Setting			
	Src/Trg Selection	Automatic			
	Source Scoping Method	Program Controlled			
	Source	Program Controlled			
I	Sweep Size Behavior	Sweep Element Size			
	Sweep Element Size	5. m			
Ξ	Advanced				
	Preserve Boundaries	Protected			
	Mesh Based Defeaturing	Off			
	Minimum Edge Length	0.74446 m			
	Write ICEM CFD Files	No			
4					

Automatic Method

Mesh Method & Behavior

- Combination of Tetrahedron Patch Conforming and Sweep Method
 - Automatically identifies sweepable bodies and creates sweep mesh
 - All non-sweepable bodies meshed using tetrahedron Patch Conformal method
- Compatible with inflation

To access it

- Default method
- Insert method → Set to Automatic

De	Details of "Automatic Method" - Method 🛛 🛛 🕂				
	Scope				
	Scoping Method	Geometry Selection			
	Geometry	1 Body			
	Suppressed	No			
	Method	Automatic 🗾 💌			
	Element Midside Nodes	Use Global Setting			

Agenda

- Meshing Methods for Part/Body Meshing
 - Assembly Meshing covered separately
- Methods & Algorithms for

 - 2D Meshing
- - Recording Meshing Order

3 methods available

- **Quadrilateral Dominant** ٠
- Triangles ٠
- Multizone Quad/Tri •

2D Meshing

Mesh Method & Behavior

- Quadrilateral Dominant & Triangles
 - Patch conforming methods
- MultiZone Quad/tri
 - Patch Independent Methods
 - Associated with face mesh type
 - All Tri
 - Quad/tri
 - All Quad

• Advanced size function & local size controls are supported

Release 16.0

Control

- Mapped Surface Meshes
 - Local mesh controls
 - Fully Mapped surface meshes
 - Specified edge sizing/intervals

Inflation

- Boundary edges are inflated
- Global & local inflation controls are supported

2D Mesh Solver Guidelines

ANSYS Fluent

- For a 2D analysis in Fluent generate the mesh in the XY plane
 - Z = 0
- For axisymmetric applications y ≥ 0 and make sure that the domain is axisymmetric about x axis
- In ANSYS Meshing, by default, a thickness is defined for a surface body and is visible when the view is not normal to the XY Plane.
 - This is purely graphical no thickness will be present when the mesh is exported into the Fluent 2D solver

ANSYS CFX

- For 2D analysis in CFX, create a volume mesh (using Sweep)
 - 1 element thick in the symmetry direction, i.e.,
- Thin Block for Planar 2D
- Thin Wedge (< 5°) for 2D Axis-symmetric

Agenda

- Meshing Methods for Part/Body Meshing
 - Assembly Meshing covered separately
- Methods & Algorithms for
- **Meshing Multiple Bodies**
 - Selective Meshing
 - **Recording Meshing Order** —

ANSYS Selective Meshing

What is ?

• Selectively picking bodies and meshing them incrementally

Why?

- Bodies can be meshed individually
- Mesh seeding from meshed bodies influences neighboring bodies (user has control)
- Automated meshing can be used at any time to mesh all remaining bodies
- When controls are added, only affected body meshes require remeshing
- Selective body updating
- Extensive mesh method interoperability

Selective Meshing

Local Meshing

Clear meshes on individual bodies Generate meshes on individual bodies

- Subsequent bodies will use the attached face mesh
- The meshing results (cell types) will depend on the meshing order
- Adjust/add controls able to remesh only affected body
- Select body(s)
 - Right click

Meshing first the pipe then the block

Meshing first the block then the pipe

Selective Meshing

Recording Mesh Operations

- Use it to record the order of meshing to automate future use
- Right click Mesh in the Outline to access it

- A Worksheet is generated
 - Record mesh operations as ordered steps
- Named Selections are automatically created for each meshed body for reference in the Worksheet

NNSYS°

Selective Meshing

Selective Body Updating

- Remeshing only bodies that have changed
- Access option through RMB click on Geometry → Properties
 - No: All geometry updated, all bodies remeshed.
 - Associatively: Accommodates for body topology change (add/delete) (slower)
 - Non-Associatively: Assumes no topology change (faster)

Ŧ			A		
1	۲	М	esh		
2	Ø	G	Ô	New DesignModele	r Geometry
3	۲	Μ	ক্টা	New SpaceClaim Geome	try
				Import Geometry	
				Duplicate	
				Transfer Data From New	
				Transfer Data To New	
			7	Update	
				Update Upstream Compone	ents
			12	Refresh	
				Reset	
			aþ	Rename	
				Properties	
				Quick Help	
				Add Note	

14	Advanced Geometry Options			
15	Analysis Type	3D 🔽		
16	Use Associativity			
17	Import Coordinate Systems			
18	Import Work Points			
19	Reader Mode Saves Updated File			
20	Import Using Instances			
21	Smart CAD Update			
22	Compare Parts On Update	No		
23	Enclosure and Symmetry Processing	No		
24	Decompose Disjoint Geometry	Associatively Non-Associatively		

Example : Geometric change to block

Release 16.0

© 2015 ANSYS, Inc.

31

ANSYS Summary

- We have studied the different Methods & Algorithms at disposal into Meshing
 - Tetrahedral Meshing
 - Patch Conforming (bottom up approach)
 - Patch Independent (top down approach)
 - Hex Meshing (best suited for CFD)
 - Sweep meshing requires a sweep direction, a source face and a target
 - Multizone which handles multiple source and target faces with a sweep direction
 - 2D Meshing
- Meshing Multiple Bodies
 - Selective Meshing Define the order of meshing
 - Recording Meshing Order Worksheet

