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A few modern industrial materials are of serious concern to the home model engineer turning with a 
light lathe machine. Virtually all turning is done using either carbon steel, high speed steel or tungsten 
carbide tipped tooling. This is mainly due to the fact that the newer and more exotic materials such as 
ceramic and diamond require high speed and rigid industrial machinery to operate correctly. The 
benefits of the new materials are more associated with optimising production and extending tool life 
than improving the surface finish. In this paper, a new intelligent based methodology employing fuzzy 
soft computing technique is proposed for improving the surface of a product during machining 
operation with a light lathe. Data was extracted experimentally from the existing turning tools and an 
improved geometry of the turning tool was modelled from this data. The studies have shown that 
intelligent based approaches can provide efficient and cost effective ways of optimising the 
performance of a lathe cutting tool with respect to the surface finish. 
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INTRODUCTION 
 
Machining is widely used for metal removal and it 
involves turning, milling, boring and cutting. The 
realisation of surface finish is a diagnostic tool that is 
needed to guarantee product functionality. Choice of 
optimized cutting parameters is very important to control 
the required surface quality. In fact, the difference 
between the real and theoretical surface roughness can 
be attributed to the influence of physical and dynamic 
phenomena such as: built-up edge, friction of cut surface 
against tool point and vibrations. The focus of this study 
is the collection and analysis of surface roughness and 
tool vibration data generated by lathe dry turning of mild 
carbon steel samples at different levels of speed, feed, 
depth of cut, tool nose radius, tool length and work piece 
length. A full factorial experimental design that allows 
considering the three-level interactions between the 
independent variables has been conducted. Vibration 
analysis has revealed that the dynamic force, related to 
the chip-thickness variation acting on the tool, is related 
to the amplitude of tool vibration at resonance and to the 
variation   of   the  tool's  natural  frequency  while  cutting  
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(Thomas et al., 2000). The quality of a surface plays an 
important role in the functionality of a machined product. 
Methods must be developed to control tool parameters 
during machining operation, so that a good surface finish 
can be obtained. Those methods also enable machine 
operators to adjust cutting machine parameters easily 
and within a shorter time. With these methods both 
material and time cost could save. A trial and error soft 
control method for improving the surface finish of a 
machined product is investigated with three controllers, 
namely: standard fuzzy PD type controller, a fuzzy PID-
type controller and a fuzzy PID-type with a parallel added 
integral part. The soft control is based on the knowledge 
and experience of human operators, who are trained to 
control a lathe machine using linguistic rule of classical IF 
(cause) THEN (effect) ELSE form. 

The control technique considered in this work is a 
special case of adaptive dynamic fuzzy that contains 
delays that account for the machining process past 
history. A standard fuzzy logic (N-FLC) can be slow to 
react to a sudden change but will always come to a 
solution, while a PID controller can find a target quickly 
and very accurately but may fluctuate first before settling. 
It is this fluctuation that may affect the rate of feed, which 
may result in a poor finish of cut, tool breakage and 
possible   harm   to   the  operator.  Due  to  this  fact,  the 



 
 
 
 
methodology of fuzzy logic seems to be the best option to 
conventional modelling approach. The lathe tool can be 
characterised by optimizing one of its three properties, 
namely: material, geometry and force. In this article, the 
geometry parameters (tool clearance angle, rake angle, 
wedge angle) are considered. For improving the surface 
finish of turning process with light lathe a dynamic fuzzing 
soft computing technique is used. The optimization of 
lathe is performed by use of properties: material, 
geometry and force to obtain the proper cutting speed 
and feed for turning process. The experiment is applied 
at cutting of aluminum and mild steel with diameter of 30 
mm by used tungsten carbide tool and HSS tool. The 
goal of this study is recording and analysis of workpice’s 
surface roughness and tool vibration data generated by 
dry turning of mild carbon steel and aluminum samples, 
at various values of speed, feed, deep of cut and other 
geometric parameters of tool. The active control of 
machining process with lathe can be made with 
controllers, such as fuzzy PD, fuzzy PID and fuzzy PID 
with a parallel added integrate part than presents a better 
performance. One important step in analysis of tool 
behavior is the investigation of heat generation during 
turning process that is performed with an infrared camera 
for lathe tools of tungsten carbide and HSS, realized by 
altering the RPM, feed depth of cut and separately at 
aluminum and mild carbon steel workpieces. The 
variation of temperature due to these parameters has a 
direct influence about surface finish of workpiece which 
recommend introducing them in algorithm control of 
turning process. 

A tool lathe model is performed by a fuzzy lathe system 
to model the controller, and the network is trained by 
using linguistic rules. These rules were supported by 
Matlab program and fuzzy methodology with Sugeno-
Mandani interference method, which involves a fuzzy 
interference engine, based on various membership 
functions to development a predicted model and analysis 
the correlation function tests. The experiment involves 
using Matlab program for loading in data that contains the 
inputs and outputs of system. Prediction of fuzzy logic 
controller is used to predict the future state control of 
lathe tool under desire depth of cut and feed rate at 
varying tangential forces. The fuzzy network used for 
modeling lathe tool parameters by implementing of FLC 
Lathe system (Mandami) that has two inputs (DE 
ERROR-feed rate and ER ERROR-depth of cut) one 
input (roughness surface or surface finish) and 14 rules, 
which has the ability to automatically adjustment of fuzzy 
controller to the changing data. This modeling of fuzzy 
system represents an alternative for improving the 
conventional technique but can’t substitute a supervision 
and control the stability turning system, being necessary 
other installation to resolve that. This work represents an 
alternative for improving the quality of workpice’s finished 
surface by cutting with a traditional lathe, and the future 
authors’ research  with  extinction  at  CNC  lathe  can  be  
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more efficiently to actual demand of machining market. 
 
 
Related work 
 
The turning operation is a combination of linear (tool) and 
rotational (workpiece) machine movements. The rate in 
IPR (inches/revolution) that the tool travels along or 
across the workpiece is referred to as the machine feed 
or the feed speed. The SFPM (surface feet/minute) or 
speed at which the part surface rotates is known as the 
cutting or surface speed. These two important criteria are 
selected to either maximize tool life and productivity or to 
balance them. 
 
 
Selecting the proper cutting speed 
 
Cutting speed is determined primarily by the 
machinability of the material and the hardness of the 
cutting tool. Machinability describes the ease or difficulty 
with which a metal can be cut. The machinability of a 
material has a direct correlation with the material’s 
hardness, or its ability to resist penetration or 
deformation. There are a number of tests that measure 
materials hardness, but the most common test for 
machinability and hardness is Brinnel. Brinnel or BHN is 
stated as a number: the higher the BHN number the 
harder the material. Different material structures pose 
different problems for the machinist. With the cutting tool 
type being equal, look at what happens to the cutting 
speed as the materials Brinnel hardness increases. 
Advanced cutting mechanics involves the art of metrology 
that is the art/science of measurements consisting of the 
following three main areas: 
 
i) Dimensional metrology (length, area and position). 
ii) Surface metrology (roughness, straightness and 
flatness). 
iii) Physical metrology (hardness, sub-surface finish and 
chemical composition). 
 
In manufacturing engineering, the realisation of surface 
finish is a diagnostic tool in a batch of processes that are 
needed to guarantee product functionality. Therefore, 
surface finish can be used as a control parameter to 
guide engineers as shown in Figure 1. The overall fuzzy 
model can result in a virtual prototyping environment for 
design optimization (Martin and Ebrahimi, 1999). The 
turning process has been investigated by many 
researchers (Dan and Mathew, 1990; El-Baradie, 1991; 
Balkrishna and Shin, 1999). A model of the dynamic 
cutting force process for three-dimensional oblique 
turning operations has been reported in Weng-Hong et al. 
(2001). In using the conventional approach, the first step 
is to understand the physical system and its control 
requirements. Based on this  understanding,  the  second 
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Figure 1. Surface finish control process. 

 
 
 
step is to develop a model which includes the plant, 
sensors and actuators. The third step is to use linear or 
linearised system’s control theory in order to determine a 
simplified version of the controller, such as the 
parameters of a PID controller. The fourth step is to 
develop an algorithm for the simplified controller. The last 
step is to simulate the design, including the effects of 
non-linearity, noise and parameter variations. If the 
performance is not satisfactory it is necessary to modify 
the system modelling, re-design the controller, re-write 
the algorithm (procedure) and re-try. 

In the age of globalization manufacturers are constantly 
facing the challenges of quality, cost and lead time in 
order to survive in the cut-throat competitive market. The 
quality of machined components is evaluated in respect 
of how closely they adhere to set product specifications 
for length, width, diameter, surface finish, and reflective 
properties. Dimensional accuracy, tool wear and quality 
of surface finish are three factors that manufacturers 
must be able to control at the machining operations to 
ensure better performance and service life of engineering 
component. In the leading edge of manufacturing, 
manufacturers are facing the challenges of higher 
productivity, quality and overall economy in the field of 
manufacturing by machining. To meet the 
aforementioned challenges in a global environment, there 
is an increasing demand for high material removal rate 
(MRR) and also longer life and stability of the cutting tool 
But high production machining with high cutting speed, 
feed and depth of cut generates large amount of heat and 
temperature at the chip-tool interface which ultimately 
reduces dimensional accuracy, tool life and surface 
integrity of the machined component. This temperature 
needs to be controlled at an optimum level to achieve 
better surface finish and ensure overall machining 
economy. Drilling is one of the most important final 
operations in the construction of aeronautical 
components. In aeronautical applications parts  are  often 

drilled during final assembly. Stacks comprising different 
metal and non-metal materials, such as fibre-reinforced 
plastics (FRP) are frequently drilled, where the burrs that 
appeared at the interface between layers often result in 
parts being disassembled for subsequent deburring 
processes. Monitoring thrust force and torque in drilling 
enables drill wear to be estimated. Moreover, knowing 
the thrust force and cutting torque in advance may be of 
great help in estimating the effect of that force on the 
workpiece during the process. Various analytical, semi-
empirical and numerical methods have been proposed to 
determine force and cutting torque levels before the 
drilling process begins. 

The earliest studies of drilling were conducted by 
Armego et al. (1972 and 1984). Most of their work 
centred on studying conical-tip drill bits. More recent work 
on drilling includes the paper of Chandrasekharan et al. 
(1995), who developed a mechanistic model for any drill 
bit geometry, using a vectorial, abstract approach from 
which they arrived at a generalization for different types 
of drill bit that enables different behaviours to be studied. 
Altintas (2000) based his development for drilling on the 
introduction of the effects of shear and friction in a way 
similar to that used for milling models. Paul et al. (2005) 
studied the effect of the chisel edge taking into account 
geometrical parameters relative to the grinding operation 
that gives rise to that chisel edge. Most of the models 
proposed consider a static system, and take no account 
of the dynamic effect caused by the flexing of the tool or 
possible grinding errors in the production of edges. These 
points are considered in some studies that link initial 
drilling statuses with the shape and quality of the hole 
obtained, such as the papers by Gupta et al. (2003) and 
Gong et al. (2005). Some models, such as that of 
Strenkowski et al. (2004) combine an analytical, 
numerical approach based on the finite element method 
(FEM) to obtain the thrust force and torque in any drill 
geometry.  Other  papers  (Lauderbaugh,  2003)  seek  to  



 
 
 
 
model the size of the burrs produced at the drill exit 
through a 2D numerical model. A more elaborate model 
is that of Guo and Dornfeld (2000), who present a 3D 
FEM model for simulating burr formation in the drilling of 
304 stainless steel. Such a drill has not been used in 
many models published to date, excepting that by Zhao 
and Ehmann (2003), for spade drills for wood drilling. In 
the developed model, the contribution of the chisel edge 
to the torque has been rejected as proposed in Altintas 
(2000); because the cutting speed is low at this edge, this 
author finds that the chisel edge does not cut but only 
spreads the material sideways by an indentation 
mechanism. The effect of the chisel edge on the thrust 
force has been modelized as this author proposes in the 
same research reference. With respect to the specific 
coefficients of this model, two different approaches have 
been followed and compared, specific coefficients are 
depending either on the Z coordinate of edge points 
(Altintas, 2000) or on cutting speed and inclination angle 
(Chandrasekharan et al., 1998). 

The main characteristics of the model are presented in 
the following studies, along with the obtaining of 
coefficients and a discussion of results. Fuzzy logic has 
great capability in capturing human commonsense and 
reasoning, decision making and other aspects of human 
cognition. Stein (2002) showed that it overcomes the 
limitations of classic logical systems, which impose 
inherent restrictions on representation of imprecise 
concept. The coefficients and constraints may be 
naturally modelled by fuzzy logic. Modelling by fuzzy logic 
opens up a new way to optimize cutting conditions and 
also tool selection. With fuzzy logic the first step is to 
understand and characterize the system behaviour by 
using our knowledge and experience. The second step is 
to directly design the control algorithm using fuzzy rules, 
which describe the principles of the controller's regulation 
in terms of the relationship between its inputs and 
outputs. The last step is to simulate and debug the 
design. If the performance is not satisfactory we only 
need to modify some fuzzy rules and re-try. The ideal 
surface roughness is a function of only tool feed and 
geometry. It represents the best possible finish which can 
be obtained for a given tool shape and corner radius 
(turning cutting tools are usually provided with the 
roundness corner) by the following theoretical 
expression: 
 

20.0321
a

f
R

r
=                                                                (1) 

 

Where: aR represents the height of the profile; f the feed 

and r the radius of round corner of cutting tool. 
 

It is also known that such aR can be achieved only if built-

up-edge, chatter inaccuracies in the machine tool 
movements and other factors are eliminated completely. 

The most popular surface roughness parameter  is  aR
 
or 
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average roughness parameter. It is the arithmetic 
average deviation from the mean line: 
 

( )max

0

l
l

R y x dx
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= ∫                                                           (2) 

 
Where L  represents a sampling length; y the ordinate of 

the profile curve. 
 

( )( )
2

0

l

q

l
R y x dx

L
= ∫                                                        (3) 

 

Both aR and qR are surface profile parameters. It is 

already known that roughness profile parameters can not 
give satisfactory results. Hence, it must be possible to 
introduce more profile parameters because of the 3-D 
metrology measuring instruments. 
 
 
ANALYSIS OF GENERATED TEMPARATURES 
 
The experiment was carried out to investigate tool 
behaviour when loaded without lubricant during contact 
between the tool and the material. The data collected 
was expected to guide in the selection of the right tool, 
considering heat generated by friction and the ability to 
cut at red-hot temperature. 
 
 
Instrument 
 
The instrument used is FLIR Therma Cam P60, Infra-Red 
Camera. 
 
 
Positioning camera 
 
The camera was positioned approximately 1 m away 
from the point of a tool in order to protect the lens from 
been hit by hot sparks from a flying swarf. 
 
 
Lathe turning tool used 
 
i) Tungsten carbide tool. 
ii) High speed steel tool. 
 
Aluminium and mild steel of both 30 mm diameter were 
used for the experiment. After each run of a cut, the tool 
was cooled to room temperature before a different depth 
of cut was set. The rotational speed of the machine was 
also altered, as well as the feed rate. Note: the work 
piece was not cooled until the last run was reached in 
order  to  examine  the  heat  transfer.  Figure 2  indicates  
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Figure 2. A representation of heat generation during the 
machining process. 
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Figure 3. Heat generation cutting aluminium with tungsten 
carbide at 1 mm depth of cut. 

 
 
 
how temperature varies during machining process and is 
a representation of all the machining experiments. The 
lower temperature at the dark point represents a 
temperature through tool tip. The upper temperature at 
the brighter area represents a temperature at a tool 
cutting point. The cutting process began from the right 
hand side to the left. 
 
 
ANALYSIS OF RESULTS 
 
Figures 3 and 5 show how temperature varies with time 
when aluminium is  cut  with  tungsten  carbide  and  high 

 
 
 
 
speed steel. Figure 3 indicates that when aluminium is 
cut with tungsten carbide tool the temperature of 
aluminium slightly and gradually increased from 30 to 
50°C over 70 s. The temperature of the tool also 
increased gradually and slightly. But for Figure 5, both 
the material and tool almost remained at a constant 
temperature of 30 and 45°C, respectively. Figures 4 and 
6 show how temperature varies with time when mild steel 
is cut with tungsten carbide tool. In Figure 4, the 
temperature of mild steel increased gradually, but slightly 
over time, from 50 to 60°C. The temperature of tungsten 
carbide also increased slightly, from 40 to 50°C. In Figure 
6, the temperature of mild steel increased steeply over 
time from 46°C to a maximum of 120°C. The drop in 
temperature could have been caused by air flow from the 
chuck. The temperature of high speed steel almost 
remained constant at 40°C. Differences in temperature 
especially for the materials, (mild steel) can be observed 
when cutting mild steel with different cutting tools: that is 
tungsten carbide and high speed steel. The difference is 
also partly the basis for choosing a correct tool for the 
machining operation and for controlling the surface finish 
of the product. Figures 7 and 8 show graphs of 
temperature against time when using tungsten carbide to 
cut aluminum at various feed rates and rotational speeds. 
The machining process was performed without a coolant. 

It could be observed that as feed rate increased from 
0.5 to 2 mm, the graphs shifted upwards, indicating the 
increase in temperature. A comparison between Figures 
7 and 8 show that as the speed of rotation increase, the 
temperature generated between the tool and the work 
piece increased. Generally, high temperature makes it 
necessary for the coolant to be considered, due to the 
fact that as temperatures increases the surface finish of 
the product deteriorates. The other reason is that the 
performance characteristics of the product deteriorate. A 
comparison between tungsten carbide and HSS tool 
Figures 7 to 10 show that, generally, tungsten carbide 
tool produces slightly higher temperatures. This is clearly 
shown by a comparison between Figures 7 and 9, when 
looking at graphs of 0.5 and 1 mm feed rate. Similar 
observations as earlier stated can be made when 
comparing Figures 9 and 10, where temperature 
increased as speed of rotation was increased. The 
highest temperature were recorded when feed rate was 2 
mm. A comparison between Figures 9, 10, 11, 12 and 13 
show that HSS tool caused high temperatures when 
machining mild steel. This was due to the fact that mild 
steel is harder than aluminum and its hardness 
approaches that of HSS. At 625 rev/min HSS tool burnt 
when cutting mild steel at 2 mm feed rate. This could be 
minimized by using coolant, so that high temperatures 
are reduced. Peaks of temperatures were observed 
during the cutting process. This might indicate different 
structures of crystals of materials which normally caused 
by error during material processing leaving material 
ingots   with   soft  and  hard  portions  or  due  to  change  
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Figure 4. Heat generation cutting mild steel with tungstne carbide 
at 1 mm depth of cut. 
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Figure 5. Heat generation cutting aluminium with high speed 
steel at 1 mm depth of cut. 

 
 
 
of flow of air during experiment since cooling was left to 
natural air. The variation of temperature due to tool 
material, work-piece material, depth of cut and speed of 
rotations, shows that indeed the machining parameters 
can control the surface finish of a work-piece. That is due 
to fact that the aforementioned parameters have direct 
effect on temperature of the tool and the work-piece. 

The   parameters  can  be  implemented  in  the  control  

Marumo et al.          269 
 
 
 

HSS-MS-1

0

20

40

60

80

100 

120 

140 

10 20 30 40 50 60 70 80

Time (s) 

T
e

m
p

e
ra

tu
re

 (
°C

) 

(°
C

) 

Temperature at cutting point

Temperature of the tool

 
 
Figure 6. Heat generation mild steel with high speed steel at 
1 mm depth of cut. 
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Figure 7. Temperature variations for tungsten carbide tool 
cutting aluminum at 470 rev/min. 

 
 
 
algorithm to control the surface finish as shown in the 
following study. 

 
 
LATHE TOOL MODEL DEVELOPMENT 
 
The modified mechatronic neuro-fuzzy lathe system is 
used to model the controller. The network is trained using 
linguistic rules. Figure 14 shows the general arrangement 
of the experimental rig. The controller has two inputs: the 

error between desired and actual force ke and the change  
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Figure 8. Temperature variations for tungsten carbide tool cutting 
aluminium at 625 rev/min. 
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Figure 9. Temperature variations for HSS tool cutting aluminium at 
470 rev/min. 

 
 
 

in error 1k k kDe e e −= − . The incremental output of the 

network is ( ),k p k k kDu F g e g De= while the output of the 

neuro-fuzzy controller is simply: 

 

( )1 1 ,k k k k p k k ku u Du u F g e g De− −= + = + . 

 
Finally, the output of the controller is weighted before 
being applied to the plant as: 
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Figure 10. Temperature variations for HSS tool cutting aluminium 
at 625 rev/min. 
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Figure 11. Temperature variations for tungsten carbide tool cutting 
mild steel at 470 rev/min. 

 
 
 

k c kc g u=                                                                         (4) 

 

The parameters ,i pg g  and cg are the normalizing gains 

of the controller, necessary to convert the inputs to the 

controller  into  range  (-1,1).  The  value ( )
max

/c k kg c u=
,  
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Figure 12. Temperature variations for tungsten carbide tool cutting 
mild steel at 625 rev/min. 
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Figure 13. Temperature variations for HSS tool cutting mild steel 

at 470 rev/min. 

 
 
 

while the pair of controller parameters ( ),i pg g are tuned 

on-line or obtained in an identical manner to the Ziegler-
Nichols method. The design objective is a controller, 
which results in a rise time of less or equal to the 

specified value riseT , an overshoot, which does not 

exceed   %p   of  the  steady  state  value  and  a  settling 
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Figure 14. Force cutting lathe. 

 
 
 

time setT  less than some specified value. The objectives 

can be achieved by the proper choice of the control rule 
base, which is the inference mechanism and the 
optimization of the free parameters of the controller. High 
speed steel cutting tools confer to retain its hardness up 
to temperature of 600°C. Tungsten carbide tools retain its 
hardness up to 2500°C (Stein, 2002). High speed steel 
material is an alloy of high carbon steel and tungsten, 
whilst Tungsten carbide consists of tungsten and lamp 
black (carbon). Since no lubricant was used, a friction 
between a cutting point/edge and a chip caused a 
significant temperature increases, more especially cutting 
mild steel, compared to aluminum. 

Erik et al. (1996, 1997) found that temperature 
influences cutting action in several ways, such as altering 
properties of the machined surface, decreasing dimen-
sional accuracy and affecting the strength, hardness and 
wear resistance of the cutting tool. During the experiment 
of metal cutting (mild steel and aluminum) the Infra–red 
Camera showed the difference of temperature at a 
cutting point and through the tip. This relate to the theory 
of heat that flows through a cross section of a bar divided 
by time and area is proportional to the temperature 
gradient; change of temperature dT at change of length 
dx, during cutting. Figure 15 shows the effects of heat on 
a tool bit. The cutting point wears out due to friction 
between a chip and cutting edge. The small curve (crater) 
is also developed when chips pass along the tool surface, 
hence causing wear. Table 1 contains of data for speed, 
feed rate and depth of cut for medium to high speed steel 
taken from machine handbook by Jang et al. (1997). 
Most of the look-up tables give minimum and maximum 
roughness of the work piece but here it is not necessary 
because it is the controlled parameter and the  roughness  
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Figure 15. Diagram of tool action. 

 
 
 

Table 1. Data chart for medium to high speed tools. 

 

Speed (m/min) Feed (mm/rev) Depth of cut (mm) 

250-500 0.0500 0.1300 

250-500 0.0800 0.2500 

250-500 0.1000 0.4100 

250-500 0.1300 0.7900 

250-500 0.1500 1.1900 

250-500 0.1800 1.5700 

250-500 0.2000 1.9800 

250-500 0.2300 2.3900 

250-500 0.2500 2.5400 

100-200 0.2800 3.1800 

100-200 0.3000 3.8100 

100-200 0.3300 4.7800 

100-200 0.3600 5.0800 

100-200 0.3800 6.3500 

100-200 0.4100 7.9200 

95-170 0.4600 9.5300 

95-170 0.5100 11.1300 

95-170 0.5600 12.7000 

95-170 0.6400 15.8800 

95-170 0.7100 17.4800 

95-170 0.7600 19.0500 

95-170 0.8100 20.6200 

95-170 0.8900 23.8300 

95-170 1.0200 25.4000 
 
 
 

of the finished product is measured by the close match 
between the actual and the predicted model output. 
Fuzzy logic is frequently described as computing with 
words rather than mathematical descriptions. Thus, 
instead of describing the control strategy in terms of 
differential equations, control is expressed as a set of 
linguistic rules. The control system works by taking 
readings from lathe tool data model and passing these to 
the N-FLC, which will then determine whether the set 
feed rate is sufficient to keep the tool at steady and at the 
desired depth of cut. The  outcome  of  the  N-FLC  is  fed  

back into the lathe tool model completing the loop. 
 
 
Modelling of cutting tool forces with speeds and 
feeds 
 
The acquired data were analysed in the time domain for 
cutting tool wear correlation. The method employed was 
geared towards developing an understanding of the 
spectra energy content of the dynamic cutting force 
signals and  how  it  could  be  used  as  an  input  sensor  



 
 
 
 
signal in the development of a tool wear monitoring 
system. Analysis of the data indicated that the spectra 
energy content correlated well with the measured tool 
wear at certain tool temperatures (Jang and Sun, 1993). 
 
 

Encoding linguistic rules 
 

Matlab was used as support for easy implementation of 
the set of rules. The fuzzy methodology applied was the 
Sugeno-Mandani inference method (Zadeh, 1973). Two 
set of rule based on acquired knowledge on the process 
and handling of the regulation of the input depth of cut in 
dependence on the feed rate and the error were set up. 
The training of a neural network (part of the neuro-model) 
is normally performed with a numerical training set. As 
control rules involving linguistic variables cannot used 
directly for network training, it is therefore necessary to 
encode the linguistic rules into numerical form prior to 
using them in existing network training packages. The 
choice of membership functions is based on past 
experience and function found in the literature (Jang and 
Sun, 1993). The problem then reduces to one of finding 
suitable mapping that maps the linguistic (that is, 

qualitative) rule set ( )R L  into a corresponding numerical 

(that is, quantitative) training set ( )R Q : 

 

( ) ( )R L R QΤ = →                                                        (5) 

 

Typical definition of variable could be: 
 

_ argNL Negative L e= , _NSM Negative Small= ,

NZ Normal= , _PSM positive Small= , 

_ argPL Positive L e=
 

 
Then one to one transformation of linguistic variables into 

numerical equivalents defined in normalised range [ ]1,1−  

could be as follows: 
 

[ ]1.0 / 0.5 / 0 / 0.5 /1.0NL NSM NZ PSM PL  → − −   

 

Thus a rule with three input variables: 
 

_1INPUT , _ 2INPUT and _ 3INPUT
 

 

and output variable: 
 

_CONTROL VARIABLE  
 
IF

        IN PU T_1 is N egative_Small

        AND  INPU T_2 is Positive_Small

        AND  INPU T_3 is Zero

TH EN

         CON TROL_VARIABLEmust be Positive_Large
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Will appear as the training string: 
 

[ ] [ ]0.5,0.5,0 1− →  

 
The training of rule-based neural controllers of specified 
topology is performed off-line. The results of this training 
are the optimum values of the synoptic weights and 
biases of the neural network that yield the control 
surface. The weights are subsequently downloaded to 
the real-time version of the controller. Should it prove it 
necessary to modify or add any rule then the network 
must be re-trained off-line. Fortunately, small changes 
require very short training times since the network 
parameters will be initialised with its previous known 
values rather than entirely random values as in the case 
of a new controller. The training set is used to train the 
neural network hundreds or even thousands of times in 
random order until the synaptic weights converge. The 
initial estimates of the unknown synaptic weights are 
taken randomly. At every epoch (that is iteration of the 
training algorithm), the synaptic weights are updated in 
accordance with the training algorithm used. The back-
propagation algorithm (BP) is by far the most popular 
training algorithm, though it converges slowly, particularly 
when the network contains many neurons and layers. 

Fortunately, in the majority of control applications 
neural controllers normally contain very few neurons and 
training is fast. Learning is considered completed when 
some measure of the error between the desired and 
actual outputs of the networks reaches some acceptable 
limit, or the numbers of epochs reach some upper limit. 

 
 
Parametric modelling and control of a single point 
lathe tool 
 
According to Zadeh (1973) fuzzy logic involves a fuzzy 
inference engine and a fuzzification-defuzzification 
module. Fuzzification expresses the input variables in the 
form of fuzzy membership value based on various 
membership functions. Governing rules in linguistic form, 
such as if cutting force is high and machining time is high, 
then tool wear is high, are formulated on the basis of 
experimental observations. Based on each rule, inference 
can be drawn on output grade and membership value. 
Inferences obtained from various rules are combined to 
arrive at a final decision. The membership values thus 
obtained are defuzzified using techniques to obtain true 
value such as flank wear. In this investigation, parametric 
identification of the lathe tool with simple least squares is 
considered. The experiments involve development of 
predicted model, and the analysis of correlation function 
tests. Linear least squares or simple least square is a 
conventional method, which finds the line minimizing the 
sum of the squared distance between the observed 
points and the fitted line. This method of fitting ensures 
that   the   estimates   of   the   slope   and   the   intercept  
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Figure 16. ARX 332, 331 and 222 outputs. 
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Figure 17. Actual and predicted output or ARX 222. 

 
 
 
parameters of the model have some desirable statistical 
properties. The experiment involves using the Matlab 
program that loads in data that contains the inputs and 
outputs. Using this data, the system model can be 
estimated. The order of the system can be approximated 
to be 2, 3, 4, 5 or 6. Using this original data, the system 
can be estimated. 

Experiment   has   been   carried  out  for  the  following  

models: ARX 333, 331, 222, 221, 555 and 665. The 
models that showed the best fit and their correlation fell 
within the 95% confidence limit were parametric models 
that is, ARX models. Figure 16 shows the measured and 
simulated output which the whole modelling is based on. 
It has to predict a model which best traces it. In such a 
case the selected or recommended parametric model will 
be the ARX (222) shown in Figure 17, that is ARX  model  
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Figure 18. Block diagram of proposed PD-PI type N-FLC. 

 
 
 
with na = 2, nb = 2 and k = 2. The reason being that 
results show that second-order models give results of 
good accuracy as that of third-order models and hence 
there is no need to high order equation when low order 
equations are good enough. 
 
 
Non-parametric modelling and control of a single 
point lathe tool 
 
The black box diagram of the switching PD-PI-type 
controller is shown in Figure 18. It is assumed that only 
two states of the lathe tool system, namely: the depth of 
cut and rate of feed are available for controller design. 
From the lathe geometry, further two states namely: 
change in feed rate and sum of error are derived. If one 
has made the choice of designing a P-, PD-, PI- or PID-
like fuzzy logic controller, this already implies the choice 
of process state and control output variables, as well as 
the content of the rule antecedent and rule consequent 
for each of the rules. The process state variables 
representing the contents of the rule antecedent (if part of 
the rule) are selected as follows: error denoted by e, 

change of error denoted by ∆e and sum of error denoted 

by Σe. The control output (process input) variables 
representing the content of the rule-consequent (then 
part of the rule) are selected as follows: control output, 

denoted by u and change of control output ∆u. By 
analogy with the conventional controller they are defined 
as: 

 

( ) ( )de k y y k= −                                       (6) 

 

( ) ( ) ( 1)e k e k e k∆ = − −                                      (7) 

 

1

( ) ( 1) ( )

n

k

e k e k e k

=

= − +∑                                                    (8) 

 
( ) ( ) ( 1)u k u k u k∆ = − −                                                      (9) 

Where yd represents the desired output or set point, k 
represents the process output, n represents the sampling 
time and is the maximum sample number. The Gaussian 
memberships are chosen for the input and output. To 
construct a rule base, depth of cut and feed rate are 
partitioned into 5 primary fuzzy sets labelled as (NB, NS, 
Z, PS, PB). PD-type and PI-type controllers are described 
by: 
 

* * *c p dk u k e k e= + ∆                                                    (10) 

 

* * *c p ik u k e k e= + ∑                                                  (11) 

 

Where , ,  and p d i ck k k k  represent proportional, differential, 

integral and controller gain coefficients respectively. The 
PD-type and PI-type N-FLCs, accordingly constitute rules 
of the form: 
 

( ) ( ) ( )

( ) ( ) ( )

n i j k

n i j k

R :IF e is E  and e is C  THEN u is U

R :IF e is E  and e is S  THEN u is U

∆

∑

 

 
 
IMPLEMENTATION OF RESULTS 
 
Prediction of fuzzy state – a fuzzy logic controller is used 
to predict the future state of the control of the lathe tool 
under given depth of cut and feed rate at varying 
tangential forces. To implement control, the trend of tool 
profile needed to be determined. The predictive algorithm 
can be implemented by calculating the variation in current 
lathe tool set parameters and future change in set point. 
The quality of the finished work piece is critically 
dependent on the rate at which the metal is cut. It is 
important where a high quality finish is required that the 
depth of cut be controlled with great accuracy. In most 
existing cutting lathes this is achieved with conventional 
two term (PI) controllers. In Figure 19, a hybrid algorithm 
neuro-fuzzy was used to model the lathe tool geometry. 
As indicated in Table 1, a data set comprising three sets 
of 24 data points divided into two halves  was  used.  The  
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Figure 19. Non linear fuzzy control scheme. 
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Figure 20. Neuro-fuzzy network used for modelling lathe tool parameters. 

 
 
 

first half was used to train the network and model was 
validated using the second half that the neuro-fuzzy had 
never seen. To model the system, a first order Takaki, 
Sugeno and Kang (TSK/ Mamdani (1985) has been 
adopted. The model adopted to characterise the lathe 
tool model comprised of 10 input and output orders: 

( u yn =n =10 ). At the identification of the lathe tool 

system and model validity, the fuzzifier posses two inputs 
as   shown   in   Figure  20  (that  is,  DE  ERROR,  which 

represents federate and ERROR which represents depth 
of cut). 

The approach utilises error and change in error for 
process state and application of the associated results to 
decide level of a single output that is, tool surface 
roughness or simply surface finish. Figure 21 
demonstrates further analysis of lathe tool parameters 
data with high non-linearities. As noted in this figure, the 
error between the actual output and the reference signal 
is significant at depth  of  cuts  greater  than  15 mm.  The  
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Figure 21. Error between actual and reference output. 

 
 
 
fuzzy controller is still able to automatically adjust to the 
changing data. 
 
 
DISCUSSION 
 
This computer based design tool enables the user to 
carry out complete design of the neuro-fuzzy controller 
from a minimal number of inputs that has been 
implemented. However, it is worth noting that intelligent 
modelling techniques are an alternative to conventional 
techniques hence their application must be tried when 
there is a prove that conventional methods do not yield 
meaningful results. Fuzzy and neuro-fuzzy are meta-
heuristic and applying these meta-heuristic to the 
knowledge based system can lead to instability. It is 
therefore recommended that stability of the system must 
be checked and verified which another branch of study 
that will be undertaken in the next phase of the research 
project. The experiment enables the researchers to 
appropriately select the cutting tools considering tool 
rigidity, friction resistant, volume of material removal and 
the quality of surface finish. The decrease in hardness 
wear resistance of the tool with increasing temperature is 
the major factor that controls useful tool life. The strength 
and thermal conductivity of the work piece, tool material, 
cutting speed and depth of cut all influence the 
temperature during machining. Thus mean cutting 
temperature is proportional to a value of cutting speed, 
feed and depth of cut. The experiment determined that 
between tungsten carbide and HSS cutting tool, the 
tungsten   tool   has   the  ability  to  remove  the  greatest 

amount of metal in the shortest time with a reasonable 
tool life. 

The standard theory/conditions would be incorporated 
to prove the results of the experiments such as: 
determining forces acting on tool point, tangential, radial, 
axial and as well as finding the tool life cycle for a given 
speed of each tool. 
 
 
FUTURE WORK 
 
The experiment will be performed on an orthogonal lathe. 
A force measuring system and a temperature measuring 
systems will be set up on it. Both force and temperature 
measuring systems consisting of wireless transducers 
(flexi force sensors) will be attached to the CNC lathe 
with the transmitter attached to a computer USB port. 
The work will be carried out using neuro-fuzzy. Fuzzy 
logic will help with parameter partitioning, neural network 
will help to make dynamic model of systems and genetic 
algorithm will be used for model optimization. The whole 
control strategy will then be tested on the research 
specimen in the lab if successfully tested on components 
taken from the mines. 
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