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In this paper, the behavior of wheeled mobile robots (WMR) has been analyzed. These robots ride on a 
system of wheels and axles, some of which may be steerable or driven. For WMRs, there are many 
wheels and axle configuration that have been used. The present work outlined for five categories of 
WMRs. The ultimate objective of this paper is to investigate the complete description of the control 
theory of such robots and its maneuverability. Equations are modeled to describe the rigid body 
motions that arise from rolling trajectories based on the geometrical constraints of these wheels. 
Finally this analysis is applied to various three wheeled mobile robots. 
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INTRODUCTION 
 
A mobile robot is a combination of various hardware and 
software components in order to move in its free space. It 
is a collection of subsystems as shown in Figure 1; 
Locomotion: it enables how the robot to move unbounded 
throughout its environment. Sensing: How the robot 
measures properties of itself and its environment. 
Control: How the robot generate physical actions. 
Reasoning: How the robot maps measurements into 
actions; Communication: How the robots communicate 
with each other or with an outside operator. But there are 
a large variety of possible ways (Xiaodong and Shugen, 
2010) to move, and so the selection of a robot’s approach 
to locomotion is an important aspect of mobile robot 
design. Understanding mobile robot motion starts with 
understanding constraints placed on the robots mobility. 
Owing these limitations, mobile robots generally locomote 
either using wheeled mechanisms, a well-known human 
technology for vehicles, or using a small number of 
articulated legs (Júlia and Federico, 2009), the simplest 
of the biological approaches to locomotion. In general, 
legged locomotion requires higher degrees of freedom 
and therefore greater mechanical complexity than 
wheeled locomotion. Wheels, in addition to being simple,  
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are extremely well suited to flat ground. 
Alexandery and Maddocks (1988) modeled a wheeled 

mobile robot as a planar rigid body that rides on an 
arbitrary number of wheels. And they developed a 
relationship between the rigid body motion of the robot 
and the steering and drive rates of wheels. The structure 
of the kinematic and dynamic models has been analyzed 
by Guy et al. (1992), for various wheeled mobile robots. 
Those wheel types, ome of the researchers have been 
dealt with some types of wheels. Wheel architecture has 
been developed by Kim et al. (2003), for the holonomic 
mobile platform in order to provide omni-directional 
motions by three individually driven and steered wheels. 
Jae et al. (2007) investigated the kinematics of a mobile 
robot with the proposed double-wheel-type active caster, 
which is developed as a distributed actuation module and 
can endow objects with mobility on the planar workspace. 
For a mobile robot equipped with N Swedish wheels, 
Giovanni (2009), has been described its kinematic 
modeling, singularity analysis, and motion control. 
Vrunda et al. (2010) have analysed on spherical wheeled 
mobile robot for feasible path planning and feedback 
control algorithms. Nilanjan and Ashitava (2004) modeled 
the wheels as a torus and proposed the use of a passive 
joint allowing a lateral degree of freedom for kinematic 
analysis of a wheeled mobile robot (WMR) moving on 
uneven terrain. A University of Minnesota’s Scout is a 
small cylindrical robot has been modeled by Sascha et al.  
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Figure 1. Reference control scheme for mobile robot systems.  

 
 
 

(2006), which is capable of rolling and jumping for motion 
prediction. With the help of some interactive tools or 
algorithms, the movement of a mobile robot can be 
controlled. Guzm´ana et al. (2008), proposed an 
interactive tool for solving mobile robot motion problems 
by understanding several well-known algorithms and 
techniques. Johann (1995) introduced a new concept in 
the control and kinematic design of multi degree of 
freedom (MDOF) mobile robots. To control wheel 
slippage compliant, linkage is provided compliance 
between the drive wheels or drive axles of a vehicle. A 
cross-coupling control algorithm has been developed by 
Johann and Yoram (1986), that guarantees a zero 
steady-state orientation error and a stability analysis of 
the control system is presented.  

The present paper deals with the kinematic model for 
general wheel mobile robots (WMR), while the robots are 
equipping with various types of wheels. Our purpose is to 
point out the structural properties of the kinematic models 
for a WMR. By introducing the concepts of degree of 
mobility and of degree of steeribility, we show that the 
variety of possible robot constructions and wheel 
configurations. The set of WMR can be partitioned in five 
classes and this analysis has been carried out in 
‘Kinematic models for various wheeled mobile robots’. 

 
 
KINEMATIC MODELS FOR VARIOUS WHEELED 
MOBILE ROBOTS 

 
Representation of a robot position 

 
A wheeled mobile robot is a wheeled vehicle which is 
capable of an autonomous motion because it is equipped 

with motors that are driven by an embarked computer. 
Throughout this analysis, we model the robot as a rigid 
body on wheels, operating on a horizontal plane. The 
total dimensionality of this robot chassis on the plane is 
three, two for position in the plane and one for orientation 
along the vertical axis, which is orthogonal to the plane. 

In order to specify the position of the robot on the 
plane, we establish a relationship between the global 
reference frame of the plane and the local reference 
frame of the robot, as in Figure 2. The axes of an 
arbitrary inertial basis on the plane as the global 

reference frame from some origin O:  to specify 

the position of the robot. Consider a point P on the robot 
chassis as its position reference point. The 

basis defines two axes relative to P on the robot 

chassis and is thus the robot’s local reference frame. The 
position of P in the global reference frame is specified by 
coordinates x and y, and the angular difference between 

the global and local reference frames is given by . 

Therefore the robot position:  
 

                          (1) 

 

And mapping is accomplished using the orthogonal 
rotation matrix: 
 

                         (2) 

 
From Equation (2), we know that we can compute the 
robot’s motion in the global reference frame from motion 
in its local reference frame: 



 
 
 
 

  
 

Figure 2. The global reference plane and the robot local 

reference frame. 

 
 
 

 

 

 

 
 

Figure 3. Rolling motion.  

 
 
 

  
 
Figure 4. Lateral slip. 

 
 
 

 and                        (3) 
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Kinematic constraints of various wheel 
configurations 
 
While a wheeled robot is in movement, we present two 
constraints for every wheel type. The first constraint 
enforces the concept of rolling contact as represented in 
Figure 3; wheel must roll when motion takes place in the 
appropriate direction. The second constraint enforces the 
concept of no lateral slippage, that the wheel must not 
slide orthogonal to the wheel plane as shown in Figure 4. 
The first step to a kinematic model of the robot is to 
express constraints on the motions of individual wheels. 
The motions of individual wheels can be later combined 
to compute the motion of the robot as a whole. 

We will consider the four basic wheel types: 
 
1. Fixed standard wheel; 
2. Steered standard wheel; 
3. Swedish wheel; 
4. Spherical wheels 
5. Castor wheel 
 
We assume that, during the motion, the plane of the 
wheel always remains vertical and there is no sliding at 
the single point of contact between the wheel and the 
ground plane (The wheel undergoes motion only under 
conditions of pure rolling and rotation about the vertical 
axis through the contact point). 
 
 
Fixed standard wheel 
 

The fixed standard wheel has no vertical axis of rotation 
for steering. Its angle to the chassis is thus fixed, and it is 
limited to motion back and forth along the wheel plane 
and rotation around its contact point with the ground 
plane. Figure 5 depicts a fixed standard wheel and 
indicates its position pose relative to the robot’s local 
reference frame. The position of robot chassis is 
expressed in polar coordinates by distance l and angle α. 
The angle of the wheel plane relative to the chassis is 
denoted by β. The wheel, which has radius r, can spin 
over time, and so its rotational position around its 
horizontal axle is a function of time t: φ(t). 

The rolling constraint for this wheel enforces that all 
motion along the direction of the wheel plane must be 
accompanied by the appropriate amount of wheel spin so 
that there is pure rolling at the contact point: 
 

 
 

                                                       (5) 

 
The sliding constraint for this  wheel  enforces  that  the 
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Figure 5. Fixed standard wheel and its 

parameters. 

 
 
 

 

  

           

 

 

 
 
Figure 6. Steerable standard wheel and its parameters. 

 
 
 
 
component of the wheel’s motion orthogonal to the wheel 
plane must be zero:   
 

               (6) 

 
 
Steered standard wheel 
 
The steered standard wheel differs from the fixed 
standard wheel only in that there is an additional degree 
of freedom: The wheel may rotate around a vertical axis 
passing through the center of the wheel and the ground 
contact point. The orientation of the wheel to the robot 

chassis is no longer a single fixed value , but instead 

varies as a function of time:  .  

The rolling and sliding constraints for the steered 
standard wheel shown in Figure 6: 
 

* 

 

                                                (7) 

 

         (8)  

 
 
Swedish wheel 
 
Swedish wheels have no vertical axis of rotation, yet are 
able to move omnidirectionally like the castor wheel. This 
is possible by adding a degree of freedom to the fixed 
standard wheel. Swedish wheels consist of a fixed 
standard wheel with rollers attached to the wheel 
perimeter with axes that are antiparallel to the main axis 
of the fixed wheel component. The exact angle γ between 
the roller axes and the main axis can vary, as shown in 
Figure 7. 

The motion constraint that is derived looks identical to 
the formula is modified by adding γ such that the effective 
direction along which the rolling constraint holds is along 
this zero component rather than along the wheel plane: 
 

(9) 

 
Orthogonal to this direction, the motion is not constrained 

because of the free rotation of the small rollers. 

 

 (10) 

 

Consider , this represents the Swedish 90-degree 

wheel. In this case, the zero component of velocity is in 
line with the wheel plane and so Equation (9) reduces 
exactly to Equation (4), the fixed standard wheel rolling 
constraint. But because of the rollers, there  is  no  sliding 



 
 
 
 

 

  

 

 
 
Figure 7. Swedish wheel and its parameters. 

 
 
 

1.  

 

    

 

 
 
Figure 8. Spherical wheel and its parameters. 

 
 
 
constraint orthogonal to the wheel plane. At the other 

extreme   the rollers have axes of rotation that are 
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parallel to the main wheel axis of rotation. For in 

Equation (9) the result is the fixed standard wheel sliding 
constraint, Equation (5). 
 
 
Spherical wheel 
 
A ball or spherical wheel, places no direct constraints on 
motion (Figure 8). Such a mechanism has no principal 
axis of rotation, and therefore no appropriate rolling or 
sliding constraints exist. Therefore Equation (11) simply 
describes the roll rate of the ball in the direction of motion 
vA of point A of the robot. 
 

    (11) 

 
By definition, the wheel rotation orthogonal to this 
direction is zero. 
 

            (12) 

 
 
Castor wheel 
 
Castor wheels are able to steer around a vertical axis. 
However, unlike the steered standard wheel, the vertical 
axis of rotation in a castor wheel does not pass through 
the ground contact point. Figure 9 depicts a castor wheel, 
demonstrating that formal specification of the castor 
wheel’s position requires an additional parameter which 
is a rigid rod of fixed length connected to wheel. 

For the caster wheel, the rolling constraint is identical to 
equation because the offset axis plays no role during 
motion that is aligned with the wheel plane: 
 

       (13) 

 
Because of the offset ground contact point relative to A, 
the constraint that there be zero lateral movement would 
be wrong. Instead, the constraint is much like a rolling 
constraint, in that appropriate rotation of the vertical axis 
must take place: 
 

     (14) 

 
 
Kinematic constraints for a robot 
 
We now consider a general mobile robot, equipped with 
N wheels of the five above described categories. We use 
the five following subscripts to identify quantities relative 
to these classes: f for fixed wheels, s for steerable 
standard wheels, sw for Swedish wheels, sp for spherical 
wheel and c for castor wheels. The numbers of wheels 
for each type are denoted Nf, Ns, Nc, Nsw, Nsp with Nf+ Ns+  
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Figure 9. Castor wheel and its parameters. 

 
 
 
Nc+ Nsw+ Nsp = N.  The configuration of the robot is fully 
described by the following vectors of coordinates  

1. Posture coordinates  

2. Angular coordinates: 

for the five types 

of wheels, respectively. 
3. Rotational coordinates: 

for the 

rotation angles of the wheels around their horizontal axis 
of rotation. 
 
The rolling constraints of all wheels can now be collected 
in a single expression: 
 

                      (15) 

 
This expression bears a strong resemblance to the rolling 
constraint of a single wheel, but substitutes matrices in 
lieu of single values, thus taking into account all wheels. 
J2 is a constant diagonal matrix N × N whose entries are 

radii r of all standard wheels. denotes a matrix with  

 
 
 
 
projections for all wheels to their motions along their 
individual wheel planes: 
 

=                              (16) 

 
where J1f, J1s, J1c, J1sw, and J1sp are  the matrices of  (Nf × 
3), (Ns × 3), (Nc × 3), (Nsw × 3) and (Nsp × 3), whose forms 
derive readily from the constraints (5), (7), (9), (11) and 
(13). J2 is a constant (N × N) matrix whose diagonal 
entries are the radii of the wheels, except for the radii of 
the Swedish wheels which are multiplied by cosγ. 

We use the same technique to collect the sliding 
constraints of all standard wheels into a single expression 
with the same structure as Equations (15) and (16): 
 

                      (17) 

 

where =  and  

 
The terms C1f, C1s, C1c, C1sw, and C1sp are the matrices of 
(Nf × 3), (Ns × 3), (Nc × 3), (Nsw × 3) and (Nsp × 3), whose 
forms derive readily from the constraints (6), (8), (10), 
(12) and (14). C2 is a constant (N × N) matrix whose 
diagonal entries are equal to d for Nc of the castor 
wheels. 

 
 
MANEUVERABILITY OF A MOBILE ROBOT 
 
The kinematic mobility of a robot chassis is its ability to 
directly move in the environment. The basic constraint 
limiting mobility is the rule that every wheel must satisfy 
its sliding constraint. In addition to instantaneous kine-
matic motion, a mobile robot is able to further manipulate 
its position, over time, by steering steerable wheels. The 
overall maneuverability of a robot is thus a combination of 
the mobility available based on the kinematic sliding 
constraints of the standard wheels, plus the additional 
freedom contributed by steering and spinning the 
steerable standard wheels. 
 
 
Degree of mobility 
 
We  can  observe  from  the  wheel kinematic  constraints
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Figure 10. (a) Four wheel with car like Ackerman steering and (b) bicycle. 

 
 
 
in Equations (9), (11), and (13) that the Swedish wheel, 
spherical wheel and castor wheel impose no kinematic 
constraints on the robot chassis, since can range freely in 
all of these cases owing to the internal wheel degrees of 
freedom. Therefore only fixed standard wheels and 
steerable standard wheels have impact on robot chassis 
kinematics and therefore require consideration when 
computing the robot’s kinematic constraints. 

Consider now the (Nf + NS) wheels of fixed and steered 
standard wheels. To avoid any lateral slip the motion 

vector  has to satisfy the following constraints: 

 

                       (18) 

 

                       (19) 

 

And =  

 

Mathematically, it represents  must belong to the 

null space of the projection matrix. Null space of   

is the space N such that for any vector n in N  
 

                        (20) 

 
The kinematic constraints [Equations (18) and (19)] can 

also be demonstrated geometrically using the concept of 
a robot’s instantaneous center of rotation (ICR). 
According to this at any given instant, wheel motion along 
the zero motion line must be zero. In other words, the 
wheel must be moving instantaneously along some circle 
of radius such that the center of that circle is located on 
the zero motion line. This center point, called the 
instantaneous center of rotation, may lie anywhere along 
the zero motion line. When R is at infinity the wheel 
moves in a straight line. This ICR geometric construction 
demonstrates how robot mobility is a function of the 
number of constraints on the robot’s motion, not the 
number of wheels. 

A robot such as the Ackerman vehicle in Figure 10a 
can have several wheels, but must always have a single 
ICR. Because its zero entire motion lines meet at a single 
point, there is a single solution for robot motion, placing 
the ICR at this meet point. In figure 10b, the bicycle 
shown has two wheels W1, and W2. Each wheel 
contributes a constraint, or a zero motion line. Taken 
together, the two constraints result in a single point as the 
only remaining solution for the ICR. 

Robot chassis kinematics is therefore a function of the 
set of independent constraints arising from all standard 
wheels. The mathematical interpretation of independence 
is related to the rank of a matrix. Equation (17) 
represents all sliding constraints imposed by the wheels 

of the mobile robot. Therefore is the 

number of independent constraints. 
In general, a robot will have zero or more fixed 

standard wheels and zero or more steerable standard 
wheels. We can therefore identify the possible range of 

rank values for any robot: 0 . 

Now we are ready to formally define a robot’s degree of 

mobility : 

 

  (21) 

 
 
Examples 
 

: If there are zero independent 

kinematic constraints in then this condition can 

be possible. It means that the robot frame equipped with 
neither fixed nor steerable standard wheels, that is, Nf = 
Ns = 0.  

Figure 11 represents that robot has three castor wheels 
and ICR can be located at any position. Therefore the 

degree of mobility  = 3 

: If a robot equipped with only one 

fixed standard wheel at the position relative to the robot’s 
local reference frame, C1s  is  empty  since  there  are  no 
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Figure 11. Robot having fully free 
motion. 

 
 
 

 
 
Figure 12. Differential-

drive robot. 

 
 
 

 
 

Figure 13. Bicycle configured robot with two 

fixed standard wheels. 

 
 
 
steerable standard wheels.  

Therefore  contains only C1f. From Equation (6), 

we can obtain the following equation. 

 
  (22) 

 
The aforementioned matrix has a rank of one since there 
is only one fixed standard wheel. Therefore the robot has 
a single independent constraint on mobility. 

Consider a robot with two fixed standard wheels having 

specifications 0, . 

The configuration is like a differential-drive robot as 
shown in Figure 12.  

 
 
 
 

 
 
Figure 14. Constrained mobile 

robot. 

 
 
 

Then the matrix  has two constraints but rank one. 

Therefore the degree of mobility 

 = 2 

 

=

  (23) 

 

: Consider a robot with two fixed 

standard wheels configuration like bicycle with the 
steering locked in the forward position as shown in Figure 
13.  
 

The matrix  retains two independent constraints 

and has a rank of two. Therefore the degree of mobility 

= 1 

Let us take , 

   

 

=

            (24) 

 

 : It means the robot is completely 

constrained in all directions and is, therefore, degenerate 
since motion in the plane is totally impossible. Figure 14 
represents how the robot is completely constrained by 
considering three fixed wheels. 

For this configured mobile robot the matrix  

retains three independent constraints and has a rank of 
three. Let  assume  the specifications for the robot shown  



 
 
 
 

   
 

 
Figure 15. No centered orientable wheels. 

 
 

 

   

 

 
 
Figure 16. WMR with one steerable wheel and 

mutually dependent centered orientable wheels. 
 
 

 

 
 
Figure 17. WMR with two steerable 

standard wheels. 

 
 
 

in Figure 11 , 

 

 

=  (25)    

 
By observing Equation (24), it is obvious that the 

 and its degree of mobility is 3-

= 0. 

 
 
Degree of steerability 
 
AWMR can be equipped with the number of centered 
orientable wheels in order to steer the robot. This  impact  
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of steering is indirect since the robot must move for the 
change in steering angle of the steerable standard wheel. 
The degree of steerability is defined: 
 

rank                        (26) 

 

An increase in the rank of implies more 

degrees of steering freedom and thus greater eventual 

maneuverability. The range of  is given 

by . Since includes , a 

steerable standard wheel can both decrease mobility and 
increase steerability: 
 
1. Its particular orientation at any instant imposes a 
kinematic constraint. 
2. Its ability to change that orientation can lead to 
additional trajectories.  
 
 
Examples 
 

1. For = 0: The robot has no centered orientable 

wheels, Ns = 0 as shown in Figure 15. Therefore its 
degree of steerability is 0. 

2. For = 1: Consider a robot has one centered 

orientable wheel, that is, Ns = 1 or two mutually 
dependent centered orientable wheels as shown in 
Figure 16.  
 

       (27) 

 

Therefore rank its Degree of 

steerability = 1. 

 

3. For = 2: consider a robot has one centered 

orientable wheel, that is, Ns = 2 and those are 
independent on each other as shown in Figure 17. 
 

    (28) 

 

Therefore the rank it’s degree of 

steerability = 2. 

 
 
Maneuverability of WMR 
 
The overall (Degrees of Freedom) DOF that a robot can 

manipulate is called the degree of maneuver-ability  

It can be defined in terms of mobility and steerability. Thus 
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Figure 18. Three 

wheeled omnidirectional 
mobile robot. 

 
 
 

 
 

Figure 19. 
Omnidirectional three 
WMR. 

 
 
 

 
 
Figure 20. Three 

wheeled omni-steer 
mobile robot. 

 
 
 

 
 
Figure 19. Omnidirectional 

three WMR. 

 
 
 
 
the maneuverability consists of the degrees of freedom 
that the robot manipulates directly through wheel velocity 
and the degrees of freedom that it indirectly manipulates 
by changing the steering configuration and moving. 

 

                                   (29) 

 
1. Omni directional: Figure 18 represents an omni-
directional mobile robot having three wheels other than 
fixed and steered standard wheels. For this type of robot, 

 and  is zero since it has 

no steerable standard wheels and fixed standard wheels.  

This results in the degree of mobility  3 and the 

degree of steerability  0 

The degree of maneuverability,  = 3 

2. Differential: Figure 19 represents a differential WMR 
having two wheels are fixed and other is except fixed and 
steered standard wheels. For this type of robot  

 is zero and  is one since 

it has no steerable standard wheels. 

This results the degree of mobility  2 and the 

degree of steerability  0 

The degree of maneuverability,  = 2 

3. Omni-Steer: Figure 20 represents three wheeled omni-
steer mobile robot having two wheels are other than fixed 
and steered standard wheels and one steered standard 

wheel. For this type of robot   is one and 

 is one since it has one steerable standard 

wheel. 

This results in the degree of mobility  2 and the 

degree of steerability  1 

 The degree of maneuverability, = 3 

4. Tricycle: Figure 21 represents tricycle mobile robot 
having two fixed wheels and one steered standard wheel. 
Steering and power are provided through the front wheel. 

For this type of robot   is one and 

 is two since it has one steerable standard 

wheel. 

This results the degree of mobility  1 and the 

degree of steerability  1 

The degree of maneuverability, = 1. 

5. Two steer: Figure 22 represents two steer three 
wheeled mobile robot having two steered standard 
wheels and one omnidirectional wheel. For this type of 

robot   is two and  is two 

since it has two steerable standard wheels. 

This results the degree of mobility,  1 and the 

degree of steerability  1 
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Figure 22. Two steer 

mobile robot. 

 
 
 

 
 
Figure 23. WMRs with various configured wheels. 

 
 
 

Table 1. Maneuverability of various configured wheels for Figure 23. 

 

Figure    

a (neither fixed wheels nor centered orientable wheels) 3 0 3 

b (one steerable standard wheel and two castor wheels) 2 1 3 

c (two independent steerable standard and one castor wheels) 1 2 3 

d (two dependent fixed and one castor wheels) 2 0 2 

e (two dependent fixed and centered orientable wheels) 1 1 2 

f (three fixed wheels) 0 0 0 

 
 
 

The degree of maneuverability  = 1 

6. Maneuverability of various configured WMR: Consider 
various WMR configurations as shown in Figure 23 
having three or four wheels with arbitrary orientations 
with respect to its wheel plane. The maneuverability of 
these WMRs can be observed in Table 1. 
 
 

Conclusion 
 

Kinematic model for various wheeled mobile robots have 
been developed. The possible wheel configurations have 

been categorized into five types for all WMRs according 
to their mobility restriction induced by the kinematic 
constraints. Posture kinematic model for a mobile robot 
has been derived, which is adequate to describe the 
global motion of the robot. The results obtained from 
these kinematic models have been applied to various 
types of WMRs in order to get their degree of mobility 
and its maneuverability. The present research on 
kinematic analysis can be applied in various fields such 
as the automotive industry, especially to all wheel drive 
electric vehicles. Since the analysis has been carried out 
under ideal considerations, the frictional effects induced  
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between the wheels of the robot and surface is 
neglected. As a future work, it is necessary to develop 
kinematic models for WMRs by considering practical 
conditions and it is required to develop the control 
algorithms and the motion experiments for real 
application. 
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